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We treat the complex refractive index of a finite molecular fluid on the basis of a
classical many-body theory; the surface problem is handled through surface-
dependent propagators. We develop a density expansion generalizing the Lorentz—
Lorenz relation and sum all two-body terms to a closed form with intermolecular
correlations determined by a Lennard-Jones pair potential; the dependence on
density, temperature and frequency is discussed and the case when the frequency is
near a molecular resonance is considered. The refractive index and the extinction
coefficient are compared with experiments for gases.
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306 F. HYNNE AND R. K. BULLOUGH

We also derive a generalization of the macroscopic relation of Onsager and Béttcher
from the many-body theory, essentially as an expansion in an effective polarizability
of a molecule in the many-body system. Exact microscopic cxpressmns for an effective
polarizability and for a reaction field are identified, and it is shown that they are
related like the Béttcher polarizability and the Onsager reaction field in a well-defined
decorrelation approximation. The relation with, and validity of, the macroscopic
formulae of Lorentz and Béttcher are analysed in depth.

1. INTRODUCTION

The present paper reports a theory of the complex refractive index; it is the second of a series
of three papers on the optics of molecular fluids. The previous paper (Hynne & Bullough
(1984), to be referred to as I) solved the problem of finding the response of a finite molecular
fluid to incident light. The last paper in the series (Hynne & Bullough (1986), to be referred
to as ITI) will treat external optical scattering.

The three papers treat the linear optical and dielectric properties of fluids of isotropically
polarizable molecules within the scope described in I: a classical many-body theory in which
a molecule can be considered the smallest unit of matter; a quasistatic approximation that
ignores dynamical effects of molecular motion; and the dipole approximation, in which the
polarization of a molecule is determined by the electric field at the centre of the molecule and
the polarizability of the molecule.

The response theory, I, showed that the response of the molecular system to llght is
determined to a very good approximation by the geometry of the system plus a single parameter,
the refractive index m, in almost complete agreement with macroscopic optics. Deviation from
such continuum behaviour was found to be appreciable only within a distance of a few
wavelengths from the surface. It is necessary to treat a finite system and the entire theory is
complicated by surface-dependent integrals. We shall refer to the problem of understanding
the meaning of the surface dependence and the calculational complexity caused by it as the
surface problem. 7

The microscopic theory also demonstrated that the frequency-dependent dielectric constant,
€, equals the square of the refractive index, € = m? (again in agreement with macroscopic
optics). It is therefore sufficient to develop the theory for the refractive index. The result of
I for the refractive index (equation (I 5.25) in an obvious notation) will form the basis for the
work of the present paper. We shall review the necessary background from I in §2 and in the
beginning of §4.

We shall find that concepts first defined in macroscopic terms in two well-known models
appear naturally in the microscopic theory; so the physical aspects of the theory are
conveniently discussed through these ideas. We therefore first briefly discuss the two models,
that of Lorentz and that of Onsager and Béttcher. :

The most familiar model of macroscopic dielectric theory is the Lorentz model, which leads
to the famous Lorentz—Lorenz relation '

(%__l)(mzi2)_m . | : (L1a)

between the refractive index m, the polarizability of a molecule a, and the density of mole-
cules n. The quantity }(m?* + 2) is the Lorentz ‘internal-field factor’ and may be said to be due to
distant dipoles, for it is well known that the result is found from macroscopic theory by excising
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a sphere of dielectric of ‘arbitrary radius about the molecule whose polarization is being
considered. The result (1.1 ) must therefore be corrected for the effect of close dipoles, the local
field correction. This correction arises because, in general, the immediate surroundmgs of any
given molecule are not uniformly polarized. ' :

From (1.1a), m is real if & is. Because of radiation reaction, however, the dipole moment
induced in an isolated molecule is related to the field acting on it (the polarizing field) through
a complex polarizability (I 2.7). So, arguably, (1.12) must be modified to

m?2—1 3 o ' | ' L
(_4# )(m2+2) nl-—-sa’ - ’ (L.14)
| s=21k3 o (1 1¢)

This we refer to as the complex: Lorentz—Lorenz relation. In (1 1¢) ky = o)/ ¢ is the wavenumber
of light in empty space at the frequency  considered. S

Evidently, m from (1.1a) depends on the single parameter na but local field corrections
modify this simple functional form. Another macroscopic theory, based on a model for polar
fluids, devised by Onsager (1936) and extended to non-polar fluids by Bottcher (1942) suggests
a complete revision of (1.1a) to read .

' m?2—1\ (2m?+1 o ' 7 '
o ( 4n )( 3m2‘)_nl—3a: o - (129)
in which 5 is the coefficient of the Onsager reaction field, |
- 2 m—1
T émi+1 (1.25)

We shall refer to the expression 3m®/(2m*+1) in. (1.24) as a cav1ty-ﬁeld factor. The
Onsager-Bottcher theory is reviewed in more detail in §5.

From (1.2),misa functlon of the two parameters na and ta and, ifa is viewed as a molecular
diameter (as it is in the macroscopic theory), (1.2) is plainly in actual conflict with (1.1). We
note, however, the formal similarity of the complex Lorentz-Lorenz relation and the
Onsager-Bottcher relation; each contains a polarizability corrected by a self-field, either the
radiation reaction or Onsager’s. reaction field. Also, I shows that there are infinitely many
additional corrections to the Lorentz-Lorenz relation forming the total local field correction.
Thus the question arises whether these could serve to resolve this conflict, both in its conceptual
and its numerical aspects. This, the “local- ﬁeld problem is the main issue of the paper.

The (broadly affirmative) answer to this questlon is reached by developmg the refractive-
index theory in the paper along two distinct but parallel tracks. The two tracks associate very
naturally with (1.1) and (1.2), respectively. One track leads to a generahzatlon of (1.15) in
terms of an infinite s serles in ny:y is the complex polarlzablhty

o
1—sa’

7= (1.3q)
The other leads to a generalization of (1. 2a) in the form essentxally of a series in nf: B is an
effective polanzablhty of a molecule within the many-body system and this was represented
in the macroscoplc model by an approx1matlon to'it, namely the Béttcher polanzablhty

a
—sa’

Y= (L 3b)

21-2
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308 F. HYNNE AND R. K. BULLOUGH

The purpose of this paper is thus to provide a theory of the complex refractive index of
molecular fluids which is exact within the scope defined above, which handles the surface
problem and the transition to a translationally invariant description, and which solves the local
field problem. To do this we find that the two alternative formulations (the development along
the two tracks mentioned) are both needed because neither formulation can perform all these
functions separately:

Each of the two developments of the theory relies on two basic processes: the propagation
of the electromagnetic field radiated by an oscillating dipole; and the polarization of a molecule
by a field. The differences between the two formulations are that the development associated
with (1.1) employs elementary processes taking place ‘in empty space’ and uses the free-field
propagator F (2.6) and the polarizability of an isolated molecule, y; the formulation associated
with (1.2) uses a screened (i.e. composite or dressed) propagator, &, and an effective (also
composite) polarizability £ of a molecule embedded in the many-body system. Both of these
composite processes are represented by infinite series, namely (4.1) for & and (6.95) for g.

It can perhaps be seen from what we have already said, that the basic processes F, ¥
associate naturally with (1.1), and £, and arguably & and g, associate naturally with (1.2).
But in practice we find it simpler first to develop the theory in terms of & together with F, the
‘unscreened’ formulation, or with &, the ‘screened’ one. In these terms the results are
unscreened or screened expansions in na for the refractive index m. They are explicit to all orders
and are rigorously equivalent. Subsequently ¥ and £ will be introduced.

It is the unscreened theory which must be thought of as the fundamental one, however. It
can be used for systematic developments such as a density expansion for m (actually given in
§3) and it remains exact up to the point where we introduce well-defined approximations to
ease numerical evaluation. ‘

Even so, either of the exact theories is complicated by the surface problem. The unscreened
expression for m, for example, depends formally on the geometry of the material medium at
every order in no beyond second order. Numerically this shape dependence is insignificant, but
this fact in no way lightens the actual calculation of these surface dependent terms.

The surface dependence is handled in the screened theory at the expense of an approximation.
The surface dependence is now contained in the screened propagator & and is associated with
(multiple) reflections of spherical waves from the surface bounding the molecular system.
Translatlonally invariant expressions for m are reached by approximating & by a closed form

F (4.4); this ignores the reflected parts. This ‘bulk approximation’ introduces a technical
divergence problem; and its use means, of course, that the screened and unscreened theories
are no longer completely equivalent. The unscreened theory remains exact, however, so it is
fundamental in this sense. ,

"Because the originally equivalent unscreened and screened formulations finally result in
generalizations of (1.1) and (1.2) respectively, we can make what we believe is a penetrating
analysis of these macroscopic formulae and the concepts surrounding them, and so remove the
many confusions which have grown up about them; we can show their inter-relationships and
thus determine those features of each of them which can be said to be correct, and those which
are inadequate. Within the whole analysis the effective polarizability £ plays an important role.
We do not introduce it until §6, where we define it from first principles and then identify it
in the microscopic expressions for m. In this way we show that the generalized Lorentz-Lorenz
relation actually contains corrections changing y into 8. Because other corrections change the
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Lorentz internal-field factor towards the cavity-field factor, we conclude that the physics of
the Onsager-Bottcher relation is the sounder starting point for a description of dielectric
polarization.

Even so, we show that it is impossible to express the eﬂ'cctxve polarizability in terms of a
reaction field without approximation; we therefore exhibit the approximation and discuss its
implications. We conclude that an effective polarizability is actually a more valuable concept
than Onsager’s reaction field in the context of refractive-index theory. We show that the
effective polarizability is used correctly in the simple Onsager—Bottcher relation and that
the concept remains useful to an approximation beyond this. The analysis serves to stress the
limitation of any macroscopic ideas based on a single molecule: intermolecular correlations
always get in the way of any rigorous use of such ideas.

‘Throughout the work we pay special attention to the two-body terms. They are both the
_simplest and the most important non-trivial class of many-body terms, and they are summed
and evaluated numerically in §3. They are invaluable as an example illustrating the effects
of the approximations involved in the macroscopic approaches, and we use them as such.

- Itis worth stressing that the formal similarity between (1.14) and (1.2¢) is no accident. These
similarities emerge in strictly parallel fashion in the two different formulations of the theory.
Both of these involve the summation of two kinds of term concealed in integrals in I. One kind
of term gives rise to the Lorentz internal-field factor in the unscreened theory and the cavity-field
factor in the screened one. The other kind is summed to yield the complex polarizability in
the unscreened theory and the effective polarizability in the screened one. The summation in
the unscreened theory was carried out in I so we can start directly from this point in §3.

The rather technical nature of the derivations and an initial lack of physical motivation may
make the argument difficult to follow. Therefore we include, in §2, a rather careful discussion
of how the two kinds of term arise; then we discuss the physical meaning of them in later
sections. We also call attention to an easy (heuristic) derivation of the simple Onsager—Boéttcher
relation from the microscopic theory in the summary of the paper in §9 (near (9.1)). Reference
to this may help the reading of §§5 and 6; but §9 remains, we think, the best place for that
easy derivation because it can there serve as a review.

Unfortunately, the systematic derivation of the generalized Onsager-Béttcher relation is
complicated by a divergence problem which arises in the screened theory. This divergence
becomes intrinsic to the translationally invariant approximation, and one is obliged to accept
working with formally divergent expressions, particularly in the course of § 5. Use of the exact
effective polarizability eventually eliminates the divergences, however, and the final result of
the screened theory, (7.19), is well defined if slightly approximate.

Historically, the result (1.1) was obtained by Lorentz (1880, 1909) and Lorenz (1880), and
a predecessor in terms of the static dielectric constant is due to Mossotti (1850) and Clausius
(1879). The question of the local-field corrections also goes back to Lorentz (1880) who
considered a molecular crystal. A model similar to the one considered by Onsager (1936) and
Bottcher (1942) had been used before by Bell (1931).

Microscopic treatment of the local-field problem for molecular fluids, usually in the context
of a dielectric constant theory, was initiated by Keyes & Kirkwood (1931), Kirkwood (1936),
and more systematically by Yvon (1936, 1937); see also Silberstein (1917). These early works
already treat one particularly important term which lies at the heart of the conflict between
the two macroscopic results (1.1) and (1.2).
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Important contributions to the theory have also been made by Buckingham and co-workers
(Buckingham & Pople 19554, &; Buckingham & Steven 1957) who considered, in particular,
the important two-body terms; by Mazur and co-workers (Mazur & Mandel 1956; Mazur
1958; Bedeaux & Mazur 1973); by Mead (19584, b, 1960, 1962, 19684, b, 1972), who was
interested in the problem of spectral lines; by Linder & Hoernschemeyer (1967), who analysed
certain concepts of the Onsager-Bottcher theory; by ourselves (Bullough 1962, 1967, 1968,
'19770; Bullough et al. 1968; Bullough & Hynne 1968; Hynne 1970, 1974 ; Hynne & Bullough
1972); and by many others, see the references in 1.

The present paper serves to give a complete and connected account of our work on the
refractive index theory. Some of the results have been quoted as results simply, or have been
derived in incomplete form, in our previous papers. Therefore in the present paper we exploit
the firm base now developed in I to give all of the details of the derivations. From these we
are able to give a more careful discussion of the results. : ’

We now outline the organization of the paper. After the preliminary §2 we start in §3 by
giving the unscreened expression for the refractive index first in the form of an expansion in
ny generalizing the Lorentz—Lorenz relation, then rearranged as a density expansion. This is
evaluated up to the quadratic term by summing all of the two-body terms with an approximate
form for the propagator F. The case when the pair-correlation function is determined by a
Lennard-Jones pair-potential is calculated analytically and numerically as a function of the
temperature and, implicitly through v, the frequency. Both the real refractive index and the
extinction coefficient are calculated. The case where the frequency is near a molecular
resonance is interpreted in terms of resonating pairs of molecules. In the simple case of a
hard-sphere gas the refractive index is expressed in terms of elementary functions.

The screened theory is developed in §§4-7. Section 4 starts by reviewing the results of I for
the screened theory and it goes on to treat the screened propagator &, the significance of its
surface dependence, its approximation in closed form, and the steps to a translationally
invariant approximation for the refractive index. Section 5 contains a derivation of a formal
expression of the Onsager-Bottcher type, and in §6 this is transformed into a physically
acceptable form by introducing the effective polarizability. In § 7 this result is extended to what
is essentially a series in nf. ‘

In §8 the relations between the two macroscopic expressions (l.l) and (1.2) are analysed, as
well as the basis for each of them in the exact theory. From this we draw conclusions about the
different validities of these well quoted formulae.

Section 9 constitutes a summary and conclusion to the whole paper.

2. SUSCEPTIBILITY KERNEL )

We consider a system of N isotropically polarizable molecules at temperature T, contained
in a region V of volume |V|. Incident upon the system is a coherent electromagnetic field E(x, w)
of frequency w. In I we solved the response problem for this system. We found the polarization
and fields induced in response to the given external field. Through an argument in terms of
the extinction theorem of Ewald (1912, 1916) and Oseen (1915) we detcrmlned the response
in the form of two separate equations, (I 5.19) and (I'5.22). IR

One of these equations (I 5.22), determines the wave numbers of the fields in the medium,
and hence the refractive index. It is this dispersion relation we shall be concerned with here.
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The other equation determines the polarization and field apart from a parametric dependence
upon the refractive index. In simplest geometry this second equation determines amplitudes
of plane wave fields, as demonstrated in (I 6.17) and (I 6.19), for example.

In I the dispersion relation was recast in a more convenient form (I 5.25) in terms of a
susceptibility kernel A: '

m?(w)—1

= |V Tr f j A(x, x';0)T(x', x) dxdx’. (2.1)

Here Tr denotes the trace of a tensor, and the kernel T takes one of the forms (I 5.264, b)
T(x’; x; mky, u) = uu exp [imk," (x"'—x)], ' (2.2q)
T(x, x;mk,) = (U -k k) exp [imky: (x"—x)]. (2.2b)

Here £, denotes the unit vector in the direction of k,. The vector k, has arbitary direction
and length k, = w/c which is the wave number of the incident light in empty space. The unit
vector # has the character of a polarization vector. It is perpendicular to k, but otherwise its
direction is arbitary. In the refractive index theory it is immaterial which of the two forms
(2.24) and (2.25) is used. A notation for the length of a vector and for a unit vector in the
direction of a given vector 51m11ar to the one used for k, here will be adopted subsequently
in this paper.

The susceptibility kernel A is the key object and is defined through the relation between the
average polarization P(x,w) and the average electric field &(x,w) by (I 3.15), '

P(x,0) = I A(x, %' 0)- 8 (x', 0) dx". (23
: 14 : :
Thus, A originally determines a susceptibility or dielectric constant, (w), and it is possible to
express the refractive index in terms of it because we have derived the relation
6(w) = m(0), (2.4)

see the argument leading to (I 5.27). This means that the refractive index and the dielectric
constant can be treated together. It is therefore sufficient to develop the theory of the refractive
index, and we shall formulate it in terms of the susceptibility kernel A.

The average electric field in (2.3) is itself defined in terms of E and P by (I 3.14),

&(x,0) = E(x,w) +fV F(x,x;0)  P(x’,w)dx’ | (2.5)

in which F is the dipole photon propagator which gives the field at x from any oscillatory dipole
p(w) at x’ as F(x, x’; w) - p(w). Explicitly, F is given by (I 2.24),

Flx,50) = (WU ZRIRTD - p (2.6)

or by the alternative forms (I 2.25, ¢).
The integral in (2.5) is defined through the mterpretatlon (I 3.4), namely

lim f ‘F(x,x’;w) dx’= —4rU (2.7)
-0 Jv )
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in which v denotes a spherical region centred at x, and the limit as the radius of the sphere
goes to zero is taken. We shell refer to a contribution arising from the use of (2.7) as a ‘Lorentz
term’. Thus in (2.5) the definition (2.7) yields

f F(x,x";0)  P(x’,w) dx’ =—§nP(x,w)+f F(x,x";w) P(x’,w)dx’ (2.8)
| 4 V-v

in which the integral over V'—u denotes the integral over the region V, treated as a principal
value integral at the singular point x: a small sphere about x is excluded from the region of
integration and the limit as its radius goes to zero is taken. The definition (2.5) of the average
electric field and the interpretation (2.7) were fully justified in the response theory I, see the
discussion below (I 5.27). No error is introduced into the theory this way.

In (2.1) the integration with T yields the transverse part of the Fourier transform of the
susceptibility kernel with the transformed variable set equal to the wave vector mk,. This means
that (2.1) is actually an equation in m. The explicit dependence on m of the right side of (2.1),
however, is in fact very weak. We shall therefore treat (2.1) as if it were an explicit expression.
The understanding is that the value of m on the right side of (2.1) is actually supplied through
iteration (if necessary).

We obtain, then, an explicit expression for the refractive index by substituting one of the
series expansions obtained in I for A. The fundamental expansion is (I 3.17), namely

]
A,y = nalUd(x, —x,) +p§_]1 (na)Ptt fv IV Fio'Fag... FpoHygs podx,...dx,. (2.9)
We shall explain it shortly. In (2.9) and below we use a notation in which subscripts indicate
positional variables. Thus, A, = A(x,, X,; w), for example. Note that, by definition, the first
term of the sum over p in (2.9) is simply (na)2F,o H,q. :

The intermolecular correlation functions Hin (2.9) are given by (I 3.18) in general explicitly
the first few functions are

Hy,=G,—1, »
Hypy = Gg3—G1y—Gp3+1, : (2.10)
le:u = 01234 - Gl23 - Gza4 - Glg Ga4 + Glz + Gza + Ga4 - L.

The functions G will be referred to as distribution functions to distinguish them from other
intermolecular correlation functions. The function G, _, is defined by (I 3.14) as the averaged
product of the instantaneous density at the points x,, X,, ..., X,,, divided by #?. Explicitly, the
first few distribution functions are

Gyp = £12+ 1718y, \
Gros = G123+ 7 [(015+035) 813+ 813 812] + 1720, 0y,
Giass = L12sat ﬂ_l[(‘sm + 013+ 014) Boaa + (025 + 34) 8134+ 034 £125] } (2.11)
+17%[815 055+ 015 034 + 85 034 + 013 05,] £14
+1720,,[ (815 +03) 8a3t 033 812] +1738,5 055 0y /

The g are the ordinary distribution functions of the theory of fluids (Hill 1956) and
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8,, = 8(x, — X,) denotes a delta function. We shall explain the role of the delta functions when
we have discussed the structure of the terms of A in general.

It is convenient to explain A in the context of (2.3), that is in its role as a susceptibility.
As a typical example we may consider the third order term

J.V [(rzoz)3 J.V FioFao Hygg dxz]'m@o dx, (2.12)

in which the function in square brackets is the third order contribution to A,,. The term (2.12)
may be said to represent the following process: first the average field induces a dipole in a
molecule at x,, accounted for by one factor « and the &,. The dipole at x, creates a field at
x, as described by F,y, and this field polarizes a molecule at x, (giving a second factor «). The
molecule at x, then gives rise to a field at x, (F,,) which polarizes a molecule there (a third
factor ). The contribution from the configuration with molecules at x,, x,, and x, is weighted
by n2H,,,dx, dx, and must be integrated over all positions x, and x, to obtain the complete
third order contribution to the average dipole moment of a molecule at x, ; there is an additional
factor n in (2.12) because we calculate the dipole moment per unit volume (not per molecule).

Roughly the weight H,,, accounts for the probability (density) of the configuration x,, x,, x,
of three molecules: it contains the ordinary three-body distribution function n2g,,,, which gives
the probability density that there is a molecule at x, and another molecule at x,, given that
there is a molecule at x,. But the weight H,,, is a more complicated combination of correlation
functions for two reasons. First of all the relation (2.3) describes the average polarization as
a function of the average field & (rather than, for example, the external field E). The structure
of the correlation functions H reflects this fact. Second, it is always necessary to account for
the possibility that the molecules which participate in the process need not all be distinct. It
is precisely this situation the delta functions in G (and hence in H) take care of. They may
therefore be said to describe self-correlations. We shall refer to functions like the 4 or G which
include all self-correlations as generalized correlation (or distribution) functions.

As an illustration of the role of the self-correlations we may look at (2.12) again. The function
H,,, consists of four terms (see (2.10)); let us consider the contribution to (2.12) from G,,,.
From (2.11) we see that G,,, includes four terms containing self-correlatlons in addition to the
simple term g,,,. From n718,, g,, we get. :

[n%s J‘V Fio'Fyy 812 dxz]'é"l. ‘ (2.13)

This term represents a process in which a dipole induced by & in a molecule at x, creates a
field acting on the molecule itself via a polarization of another molecule at a point x,, which
can be anywhere in V. We call such a process a self-interaction (of the molecule at x,). The
self-correlations contained in the generalized correlation functions take care of all the
self-interactions of the theory. As we shall see, these play an important role in the theory of
dielectric polarization.

- The case in which a self-correlation connects two points directly across a propagator F is
special. It describes a self-interaction not mediated by other molecules. This self-interaction
is of fundamental quantum electrodynamical origin. Within the present essentially classical
theory it is represented by the radiation rcactlon introduced through the interpretation
(I 2.26),
fF(x, X ;0)6(x—x")dx’ = %k} U = sU. (2.14)

22 Vol. 321. A
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Therefore, the remaining terms arising from G,,, in (2.12) are
41k n%a® f , Fio° 6o 810X, — 3k na38, (2.15)

besides the term containing g,,,. The examples (2.13) and (2.15) show the terms arising from
the self-correlations contained in G,,,, which again is contained in the H,,, of the third order
term (2.12). There are similar contributions from the other terms of H,,,.

The consistent treatment of all the self-interactions on an equal footing through self-
correlations concealed in generalized correlation functions has resulted in a very economical
notation. We shall continue to use this notation. The benefits are, for example, highly
symmetrical expressions for a screened propagator and for an effective molecular polarizability
introduced in (4.1) and (6.94) below and an interesting extension of (2.14) to a ‘screened
self-interaction’. But to make detailed (numerical) evaluation it is necessary to write the terms
out in all detail, as we shall do in §3; and in this situation it is preferable to handle radiation
reactlon separately through the use of the complex polarlzablhty (I 2.7) already mentloned

n (1.3a),
a ’ ’ :
r= 1—%ikda’ ; R (2-16)

All self-correlations dxrectly across F propagators must then be omitted.

It may be helpful if we also demonstrate the use of (2.7) in interpreting (2. 12) Equation
(2.7) means that we may view all integrals as principal value integrals at the singularities of
the F propagators provided we add the ‘contributions of the small spheres’ as determined by
(2.7). There are no such contributions from an F covered by a generalized dlstnbutlon function
G: for each term of G the integrand either vanishes at the singularity of F because an ordinary
distribution function vanishes there, or else there is a delta function so that (2.14) applies. Thus
the term from G,,, in (2.12) has no contributions from small spheres. The terms in G,, and
G,, have contributions solely from the F’s not covered by a G. From these two terms we get

tn02)° [ Fipr,Grodx, e

Note that the sign is positive because G,, and G,, appear with minus signs in H,,,. The term
from the (+1) of H,,, gives three contrlbutlons from the small spheres because the integral

can be written |
IVIV=fv—va-v+fva-v+fy;v L+LL (2.18)

in an informal notation with omission of the common integrand. The two cross terms are equal,
and we get

— 87 (not)® I _ Fro Godxg+n(n0)? 8. - (2.19)

The use of the definition (2.7) has simplified the series expansion of A, and we shall continue
to use this notation. But when we work with the refractive index we may choose to conceal
all effects of small spheres in a Lorentz internal-field factor: the result (I 5.32) shows that we
may omit all contributions from small spheres on the right side of (2.1) if we multiply the left
side by a factor 3/(m?+2), the inverse of the Lorentz internal-field factor. We shall use this
form in §3
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In I we also derived an alternative expansion of the susceptibility kernel, (I 4.10), in terms
of a screened propagator &, which itself was given as an expansion (I 4.13) in terms of the
usual propagator F. The screened propagator describes propagation in the medium, and the
idea is to obtain a description which is more efficient by including partly summed entities in
closed form with well-defined physical meaning. We shall summarize the results of I relevant
to the screened formulation in §4. :

We now develop the result (2.1) so obtaining expressions at low densities whlch can be
evaluated numerically. Later we use the result in the discussion of the local-field problem.

£

3. GENERALIZED LORENTZ-LORENZ RELATION

In this section we shall analyse the refractive index as a function of the temperature and
density of the fluid and (implicitly) of the frequency of the incident light. We shall work from
(2.1) with the expansion (2.9). But we shall transfer the contribution of the small spheres to
the left side as a factor 3/(m?+2) by use of the result (I 5.32), and we shall handle radiation
reaction through the complex polarizability (2.16) as we have said. We then get the generalized

Lorentz—Lorenz relation ‘
mi—1 3 ©
= D.
( 4n )(m2+2) pzjl Lp(my)?, (3.1a)

where 7 is a function of the frequency w, whereas the coefficients L,, depend on z and T as
well as on w; the coefficients up to fourth order are L, = 1 and

L,=V|' Tr J'V dx, L) dx, Fpp Ty (g — 1), (3.16)

Ly=|V"1 Trj dx, [f k dfx2f dxa Flz'anfTai(glza_glz_gzs+ 1)
| 4 V—-v V—v

1 fv dxz'Flz.le.Tll'glz]?- o \ B (3.1¢)

L,=|V|? Trj dx, [J dxzj dxsf dx, Fm'Fm'FM'T41
vV V—-v . V-=v V-0 -
X (81984 — &123— Lass — 12834+ 812 a3+ 8aa— 1)

+n71 I dxz f &dx‘a Fio Foqt Fak1 'Tnglza
+n1 J dx, J;}_v dxyF, Fy  Fige Tsl(glza —&12)
+n'1 f dx, f .,dxs Fm’an ’ F32"T21(g123_g23)
V—v | 4
+n? fdxz Fi2'For- Flz'Tnglz]- : : Co (3.1d)

The integrations in (3.1) may always be taken as principal value integrals over the finite region
V, but we have simplified the expression where possible. The integrations with respect to X,
in (3.10) and in the last term of (3.1d) may be extended over all space, but in (3.15) the
principal value prescription must be used at X, = X,. The various terms in (3.1) arise from the
H functions (2.10) with omission of self-correlations directly across F propagators (which have

22-2
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been summed and concealed in the complex polarizability y). The leading term at each order
contains simply the ordinary (non-generalized) correlation functions corresponding to the
relevant . H function, and is given by (2.10) with the G functions replaced by ordinary
distribution functions g. The succeeding terms at each order arise from self-correlations not
across F propagators contained in the generalized functions as discussed near (2.13).

At lowest order in ny equation (3.1) is just the complex Lorentz—Lorenz relation (1.15)

) e

The higher terms of (3.1a) comprise the local-field correction, and the significance of this
correction constitutes the main problem of this paper. In the following sections we shall see
that the corrections are conceptually significant, and we now show that they can also be
numerlcally 1mportant ’ ‘

(a) Density expansion

We rearrange (3.1) as an expansion in powers of the density #,

2__
CF=)Gm)= £ by, D%, b0 ) = 7(0) 3.3
and investigate some experimental consequences at low densities. Notice that the series (3.1a)
as it stands is not a power series in ny because the coefficients depend on 7; so m depends on
n and y separately. Thus b, n? gets contributions from all terms with p > 2 in (3.1) arising from
self-correlations in the H-functlons (2.10).

The term (3.15) is a two-body term because the integral mvolves two points. Similarly, the
last term of each of (3.1¢) and (3.1d) are two-body terms. All of the two-body terms contain
an explicit factor n2 and they contribute to the term b, 72 in the density expansion (3.3). But
notice that in each of these two-body terms the pair-distribution function g,, and the Fourier
kernel T,, depend on n and must be expanded in powers of n (see, for example, Stell 1964).

812 =ei2[1+nf(em—1) (eza—l)dx3+...];_ (3.4)
Ty = uw exp (iky 1y,) [1 +n(i2nyk,y 1) + ] (8.5)

Here '
€13 = €Xp ["'1¢("1_g)/kB T}, rp=x—x, 7';2 = |ryl; (3.6)

¢ is the pair-potential, and kg is Boltzmann’s constant. We have assumed pairwise additivity
in (3.4) but the higher terms of (3.4) contribute only to (3.3) for p > 3, and we do not calculate
these quantities here.

It is plain that we get additional two-body terms from all orders p > 2 in (3.1); however,
they can only come from the leading term G,,4 ,, of each H,,4 ,, function (2.10). The term
(3.15) is special among the two-body terms in that it contains the correlation function g;,— 1.
All of the other two-body terms contain g,,, and these are conveniently classified according
to whether the number of propagators F is even or odd. We may therefore write

by =by(0, T) +65 (w0, T) +653(w, T) - (3.749)
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in which, writing F(x, x’;») as F(x —x’),
bg(w, T) ="y2(trv) uu:‘J\_ F(r) exp (iko'f) {exp[—(r)/kg T]—1}dr, . (3,’;1b)
o) =y ¥ (o) PO epl-g0) kTl @19

B, T) = yw)uu: 3 [[y@) Fr))# exp ik, r—g()/ks T1dr.  (3.74)
p=1 .

The integrations in (3.7) can be taken over all space except in the first term of the sum in (3.7¢)

which must be restricted to the finite region V. When the characteristic range /, of ¢ is small

compared to k5! we find by use of the explicit form (I 2.25) of F

by (w, T) = y(w) {usz [exp ( ¢(r)/kB T)—l] fmrdr—lilc"’Bz(T)}[l+O(Ic2 12)] (3.84)
fBz(T = ———f {exp[— ¢ r)//cB T]—1}41tr2dr, | | » (3.8%)

in which B,(T) is the usual second virial coefficient of the equation of state of the fluid. It is
important to retain the real and imaginary parts according to their significance to Re (m) and
Im (m) respectlvely The first term of (3.84) can be ignored therefore because it is O (2 [2) ; but
the second term, although O(k3 §), must be retained because it is O(1) relative to Im (m). As
we shall see, a theory developed only up to 4}, like that derived by Hoek (1939) and Rosenfeld
(1951), cannot give an adequate description of two-body contributions to Re (m). '
To estimate the contribution of the remaining two-body terms we first approximate the
propagator F(r) by its Coulomb part VVr~! and ignore the phase factors. The resulting
contribution to (3.3) is
()t hy(w, T), (3.90)

hy(0, T) = n j:’ {rs_gy(w);ra+;'(w)]exp[—¢(r)/k§ Tirdn (@99)

This expression constitutes an exact summation of the series (3.7¢, d) within the above-
mentioned approximations. To derive it we note that the even and odd terms (3.7¢) and (3.74)
combine when the phase factor is ignored. In the resulting sum over all powers of yF (taken
inside the integration) we write (3ff—U) as 2ff— (U—#F). The two terms contribute
independently because of orthogonality, and they give rise to the two fractions in square
brackets in (3.94) after a term proportional to 7~3 has been added to the first term and
subtracted from the second one inside the brackets. The result is satisfactory for the real part
of m; but to treat the imaginary part correctly we need to include contributions of the radiation
part of the propagator, o
R(x,x";0) = F(x,x";0) = VV|x—x/|%. (3.10)

The first term of the series (8.7¢) is surface dependent and must be treated separately. The
two Fs there are written as a sum of Coulomb and radiation parts, and the contribution from
the product of two Coulomb parts has already been included in #,, whereas the two cross terms
between Coulomb and radiation parts vanish to a good approximation. The contribution from
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the product of two radiation parts is 21i§ik3 n?a® as can be seen by all space Fourier
transformation and use of Parseval’s theorem (compare the imaginary part of the result (I 6.30)
with x, = x,). For the remaining terms of (3.7¢) and for all terms of (3.74) it is sufficient to
include (in addition to 4,(ry)?) all contributions with one F in each term replaced by R and
the remaining Fs replaced by VVr~1. For simplicity we shall furthermore approximate R by
its limit value 2ik3U as |x—x’| >0 and again neglect phase factors. The result is the density
expansion of the Lorentz—Lorenz relation up to second order in n

’(m“;;l)(mziz)=W+{hz+i§k3[f232+2uy+5a;Gﬂhg)]}(n7)24r---- - B

Recall that the term k,(ny)? comes from the two-body terms (3.7¢) and (3.7d) with Coulomb
part propagators; inside the square brackets the term — 2B, comes from (3.75) and 2y comes
from the first term of (3.7¢) with (3.10); so the only term that remains to be explained in (3.11)
is the last one in brackets, which comes from the effect of radiation parts (3.10) in the sum
of two-body terms with at least three propagators. For this we note that a term with p
propagators F gives rise to p equal terms in which one of the propagators is replaced by 2ik3 U
to give p2ik3(VVr=1)?~1, The result can obviously be expressed as a derivative with respect to
v as in the last term of (3.11). Note that the factor ¥? inside the differentiation stems from the
explicit factor y? in the definition (3.94, &) of £,.

We have not been able to justify the approximations that have lead to (3.11) with complete
rigour. But we shall see in III that (3.11) is consistent with a similar low-dens1ty result for the
scattering obtained there provided that the frequency is far from a molecular resonance.

If we choose for ¢(r) a Lennard-Jones potential (see, for example, Hirschfelder et al. 1954),

S0) =ky T, [(“)'2—2(-‘75)5], | (3.12)

we obtain £, as the function

a® T\ (e T, a® 'I;)
| hy(, T) hy (7 T) B(’)’ , T) B( 5’ T (3.13)
of the two dlmcnsmnless variables z = a/y and w = T, o/ T. We have introduced the function
: _ [®expw(2—t4] , ' -
. B(z, w) _.J‘d iz d¢ : o (3.14)

of the real variable w and the complex variable z. Because () has a positive imaginary part
the integrand of (3.14) is non-singular at all frequencies w > 0.

If we choose instead a hard sphere potential for ¢(r) so that the exponential in (3.95) bccomes
a unit step function 6(r—r,) with r, the hard sphere diameter, we then get the very simple closed

form for k, (Hynne 1974): : » o
F+7) ,
=8
hy = 51 In (rs 2y (3.15)

The result (3.15) is obtained dircctly by integration of (3.94) with the hard-sphere potential.
The logarithm in (3.15) is the principal branch defined on the complex plane cut along the
negative real axis. We shall discuss the consequences of the results (3.13) and (3.15) below in
this section.
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For a discussion of the result (3.11) it is convenient to consider the real and imaginary parts
of the refractive index separately. The real part is straightforward from (3.11) so we need only
consider the imaginary part. We shall discuss it in the form of the extinction coefficient

o1 =2k, Im(m), R - (3.16a)
which may conveniently be written SR ' ‘ o R
T= Re(m)I { yoe o - (3.165)

Denoting the rlght side of (3 1 l) by R we can omit the Lorcntz factor from the left 51de of (3 11)
if we divide the right side by [1—4nR]. Expansion of this denominator up to terms quadratic
in the density just adds a term 4n(ny)? to the right side. To obtain a true density expansion
we must also expand the factor [Re (m)]™! = 1 —2nny+... from (3.164) and retain linear and
quadratic terms in the product. Except for frequencies so close to a molecular resonance ©;
that @ — w; is comparable to the natural width of the spectral line, we may ignore the difference
between a, Re(y), and [y], for example, and we then have up to terms in 72

7 = §nkl(ne)?{1/n— 2B, +ina + [2x Re (hy) +3k® Im (k )]+Re (2'yh +y= ahz/ay)
- : AR (3 17)

The term 27y inside the brackets in (3.11) has been cancelled against a term from the
expansion of [Re(m)]™2. In §4 we shall see how the factor [Re(m)]™! is actually eliminated
beyond the second order, see the discussion near (4.17). The term n~*—2B, can now be
identified as the beginning of an expansion of the isothermal compressibility «, of the fluid

KTkB =n" [1-—2Bn (3B;—4BY)n?+...], (3.18)

in which B,, denotes the pth virial coefficient. Equation (3.18) can be obtained by differentiation
of the virial equation of state. Actually, it arises here because of the expansion (3.4) : if the full
distribution function is retained the k4 appears directly (see, for example, Hill 1956, p. 236).

For a density expansion (3.17) is correct of course. But it is well known from the work of Einstein
(1910) that 7 is proportional to k. to a good approximation. We derive this result from the
microscopic theory in ITI. We might also attempt to interpret the Lorentz term §no in (3.17)
as the beginning of an expression of a macroscopic factor such as [3(m?+2)]2. Factors like this
appear in the scattering theory (see, for example, Fixman 1955). But we shall see in III that
the term is naturally contained in the Einstein formula, which we prove there; in the density
expansion it must appear explicitly in the quadratic terms, of course. We shall return to the
result (3.17) in the subsection (¢) below.

(b) Dependence on tempemture and molecular individuality

We now discuss the two- -body result (3.11) with 4, given by (3.13) and (3 14) for a
Lennard-Jones potential. We focus on the real part of the refractive index and its dependence
on the temperature. It is therefore sufficient to consider

(’"1;1)(,,;3 )orth e

where m and k, mean their real parts. For argon, which has Lennard-Jones parameters



http://rsta.royalsocietypublishing.org/

Y | \

THE ROYAL A
SOCIETY \

PHILOSOPHICAL
TRANSACTIONS
OF

a
R

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

320 F. HYNNE AND R. K. BULLOUGH

T, = 119.8 K, a = 0.3822 nm and polarizability a(w) = 1.667 x 10~2¢ cm? at A = 2n¢/w =
633 nm, we find at 7 = 298.2 K ‘ '

z=a/y =335—3.64ix 10", w= T,/T = 0.402. (3.20)

This gives /4, = 0.517 in agreement with the experimental value of 0.511 of Buckingham &
Graham (1974). Table 1 gives theoretical values of %, for a few isotropically polarizable
molecules and compares these with the experimental values which appear to be determined
with sufficient accuracy. The values of 4, in table 1 and figure 1 have been obtained by
numerical integration of (3.14) with special care taken over the accuracy of the contributions
from the regions near the singularities. ~ ‘

The first five rows of table 1 give the Lennard-Jones parameters and the reduced variables
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~
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Ficure 1. The two-body contribution to the complex refractive index as expressed by ‘the function hy with a
Lennard-, jones potential (parameters a and kg T;) as a function of the reduced inverse temperature and the
reduced inverse polarizability. Note the scalings by x2 and x in (¢) and (d). Note also in () that the reliable
regions are a tiny interval about x = 0 with exclusion of a still much smaller 1nterval about x = 0; and
furthermore the regions to the extreme left and right of the diagram.

TABLE 1. 'COMPARISON OF EXPERIMENTAL AND THEORETICAL VALUES OF THE TWO-EODY CONTRI-
BUTIONS TO THE REFRACTIVE INDEX TOGETHER WITH THE THEORETICAL TEMPERATURE

COEFFICIENT

argon krypton xenon methane
a/(10730 m?) 1.668 2.484 4.045 2.616
a/(1071° m) 3.822 : 4.04 4.60 © 4.285
Re(2) = é®/a ‘ 335 26.6 . 24.1 v 30.1
/K 119.8 171 221 148.2
w=T/T 0.402 0.574 0.741 0.497
Re (k) 0.517 0.700 0.840 0.597
experimental - 0.5118 _ 0.60° — 0.6882
— (0hy/OT) /(1073 K1) 0.211 ©0.588 1.065 0.385

& Buckingham & Graham (1974), 2n¢/w = 633 nm, T 299 K.
> Orcutt & Cole (1967), w & 0, T = 322 K.
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Re(z) and w used in the computations. The results are insensitive to Im (z) and —5 x 1078 has
been used for it. The temperature is 298.15 K in all theoretical results. The entry Re (4,)
determines the refractive index through (3.19) and together with the entry 0k,/0 T it determines
the temperature coefficient through (3.22) and (3.23). The entry ‘experimental’ represents the
quantity 4nB./A? where A, and B, are the first and second refractivity virial coefficients as
defined by, for example, Sutter (1972). It is this quantity that can be compared directly with
Re (k,) when any difference in temperature is accounted for through the temperature coefficient
of k,. This gives &, = 0.686 for krypton at 322 K. The experimental values for argon and
methane in table 1 have been obtained (Buckingham & Graham 1974) directly from the
variation of the refractive index with density using an accurate interferometric technique. The
agreement with Re (#,) is excellent for argon and reasonable for methane. The experimental
value for krypton comes from a measurement of the dielectric constant at low frequency (Orcutt
& Cole 1967), and the agreement is comparable to that of methane. For SF; (not shown in
the table) the experimental values (Nelson & Cole 1971 ; Buckingham & Graham 1974) exceed
the theoretical value by a factor of 2.6. In contrast, the light noble gases, helium and neon,
are consistently found experimentally to have negative second refractivity (or dielectric) virial
coefficients (and the same seems to apply to CF, (Blythe et al. 1960)); so these cases apparently
cannot be described, even qualitatively, in the approximations of the present work. A number
of mechanisms, most of them involving quantum features, have been considered to explain these
experimental results (Michels et al. 1937; Ten Seldam & de Groot 1952; Jansen & Mazur 1955;
Buckingham & Pople 19555; Buckingham & Orr 1967; Heinrichs 1969; Lim et al. 1970;
Certain & Fortune 1971; Buckingham et al. 1973; Buckingham & Watts 19773; O’Brien ¢t al.
1973). The theory applies to isotropically polarizable molecules, and we have not attempted
to adapt the results for a comparison with measurements on anisotropic molecules like N,, CO,,
etc. (see, for example, Montixi ef al. (1983) and the review by Sutter (1972)).

Figure 1 shows 4, as a function of the inverse temperature, (a), and the inverse polarizability,
(), (¢), and (d). The subscript L] on Ay  refers to the use of a Lennard-Jones potential. In
figure 1¢, d we plot both Re (4,) and Im (k,) as functions of x = Re (z) = a3/« for large x, with
the choice y = Im(z) = —2(kya)® = —5 x 1078, treated as a constant, and for the two values
w= T,/ T = 0.4 and 0.8. We may view x as a measure of frequency  but it should be noted
that y also depends on w; although Re (4,) is always insensitive to variations in y, Im (k) is not
when Im(k,) € 1, and figure 15 can therefore only indicate the frequency dependence of
Im (h,). However, the primary purpose of these figures is to indicate the variation of 4, from
one substance to another. The scaling by x and 2 is chosen to give non-zero horizontal
aymptotes and hence improved numerical representation of the results. The asymptotic values
correspond to the first term of the series 4§ and were found for the real part by de Boer ef al.
(1953), by Buckingham & Pople (19554a), and for a hard sphere gas by Kirkwood (1936). It
is seen that the correction from the higher terms is rather small at large x, that is for most
substances well off resonance. Near a molecular resonance the higher terms are essential,
however, as we shall show in subsection (¢).

The temperature dependence of Re(k,) is shown for ¢®/a = 25 and 35 in figure 1a. The
temperature variation of m is conveniently expressed in terms of the dimensionless combination

= () )
T na\ 4m me+4+2)

23 Vol. 321. A

(3.21)
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This quantity represents the molar refraction in units of the first refractivity virial coefficient,
A, =4%nN, a, where N, is Avogadro’s constant (see, for example, Sutter 1972). We then find
for the temperature variation 3

(gn;") g%(mzl: 2) [(3’}) ‘L] o | - (3.22)

where £ = V-1(0V/0T),, i is the thermal expanswny Wc thcrefore need only con31der for the

real part of the refractive index _
oL oL on\ (oL Ok,
(aT) - (7), +67 T) (&), ==l5- ]* o, 6:28)
Wthh is the quantity often studled expenmentally (see, for example Beysens & Calmettc
1977). We obtain the dcrlvanvcs at constant density formally by setting £ = 0 and replacing
fixed p by fixed n in (3.22) and (3.23).

Figure 1a shows that 4, has a minimum as a function of w = T / T and hence (E)L/a T), has
a zero as a function of T (still assuming sufficiently low densities). For argon this occurs at
T = 497 K. Under ordinary conditions both terms in brackets in (3.23) are negative and the
second term due to thermal expansion dominates. (It is nearly 909, of the total for argon.)
Thus (0L/0T), is usually negative (—8x 107® K™ for argon at room temperature and
atmospheric pressure) and it becomes positive only at high temperatures. Table 1 shows 04,/0T
for the selected gases; note the negative sign. » ’ '

The low density region has been discussed also (for the static dielectric constant) by de Boer
et al. (1953), who considered the first term of the series (3.7¢), and by Buckingham & Pople
(19554a) who considered an equivalent of the combined series (3.7¢) and (3.7d) in a study of
two molecules. Vezetti & Keller (1967) reported these terms in a many-molecule analysis. Note
that these series sum to a divergent integral when radiation reaction is omitted, and because
of this difficulty Buckingham & Pople actually_calculate only the first term of (3.7¢). We discuss
the nature of the singularity shortly. »

(¢) Dependence on frequency

We now consider the complex refractive index (3.11) and in particular the extinction
coefficient (3.17) as functions of frequency for either a Lennard- -Jones gas or a hard-sphere
gas at low densities using either (3.13) or (3.15) for 4,. That is to say we discuss the dependence
of m or 7 on @ through a(w) in several disconnected frequency regions where the fundamental
approximations of the theory can be expected to apply.

- Close enough to a resonance, wj, a(w) can be approx1matcd by

a@) o, =gt (3.24)

, . W= 2mg wy; , :

The proportionality factor y; is given by the quantum theory in terms of the oscillator strength
of the resonance transition, f;, and we have quoted it for easy reference; m, denotes the electron
mass. It is tempting now to interpret Re (z) essentially as frequency although it may be difficult
in practice to observe the profile of 4, by a frequency scan. Nevertheless, it is convenient to
identify four distinct regions for which the labels owe something to spectral analysis:

(i) resonance regions |a| > min (k53 (a®/n)}),

(i) line-wings regions @® < |a} < min (ky 3, (a®/n)}),

(iii) transition regions |a] & 4%,

(iv) off-resonance regions |a| < a®.
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We now compare the terms of (3.17) in square brackets, which come from Im(y?%k,) with
the last term, Re{0(y?h,)/0y}, which comes from terms with one radiation part propagator
(3.10). Plainly, the two terms in Re (k,) are equal. (We may treat y as « here.) Comparison
of Oh,/0y and Im (4,), both calculated directly from the defining expression (3.13) shows that
the term Re (y%0h,/0y) is equal to the term 3453 Im (4,) to a very good approximation in the
off-resonance region but is small compared to that term in the line wings reglon

To see this we look at B(z, ) with z = 43/y and we find

Re(7 2_179)_”31{ f ﬂﬁvt%_.)ldt, (3.250)

exp [w(2—#)] .. .
T ds. N _ | (3.25b)

Bk Im(B) = a"'J- ‘
From the other term —B(—{z,w) of (3.13) we get the same result with an additional factor
1 and with z replaced by —1z in the denominators. So the two terms compared are very similar,
but there is the difference that the former has a second order pole in the integrand just off the
real axis whereas the latter has a pair of complex conjugate simple poles there. This difference
is unimportant in the off-resonance region where the contributions from regions near the
singularities are negligible because the exponential factor in (3.14) almost vanishes there,
compare the discussion of the significance of the poles of 4, below, but otherwise the contribution
from a small region around ¢ = —1/a or ¢ = 1/2a completely dominates the integral (3.255)
or the similar one from —B(—1z, w), whichever contains a near singularity within the region
of integration. The same conclusion applies to (3.25a) only if the exponential function varies
significantly with ¢ near the singularity; and this is not the case in the line-wings regions.
From this analysis we see that in the off-resonance reglon (iv) the result (3.17) may be written

7 =nki(na)?[1/n—2B, +§na+4¢x Re (hy) +3k5% Im (1) + . (3.26)

We shall see in III that (3 26) agrees with a result for the total scattermg from a low-density
gas off resonance.’ » : , ~

We now look at the other regions (i ( )—(iii). Wc are obliged to exclude»the resonance regions
(i) from consideration since (3.17) is inadequate there: in a rough sense y contains a single
particle resonance and all terms in (ny)? in (3.1) also resonate there so 3-, 4-, and all p-body
terms become important. The (a®/n)} condition in the bound of the region (i) is a rough estimate
of the region where many-body resonances are important and (3.17) fails. The estimate is based
on the resonance of an approximate form of an effective polarizability for a molecule in the
many-body system (see (5.22) with (5.13) below) ; we must refer to Hynne (1974) for details.

The magnitude of the resonance region is probably overestimated this way. So the estimate
of the region of validity for the line-wings region, which is the one we are interested in here,
is therefore conservative. The k53 condition in (i) is a measure of the natural width introduced
via radiation reaction through the resonance of y(w). Notice that a resonance region is narrow
in terms of Re (z) = a®/a, typically 1073 at n = 10’ cm™3 according to (i)..

The line wings regions exist at least for thin enough vapours and are still narrow on the Re (2)
scale. The resonance region cannot be distinguished from the line wings region in figure 1, but
the combined regions (i) and (ii) form a tiny interval around Re (z) = 0 where Im (%,) has a
plateau. The transition regions (iii) are the broad regions around Re(z) = 2 and Re(z) = —1
connecting the line wings regions with the off-resonance regions (iv) to the right and left of

23-2
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the shoulders. These regions (iv) are characterized by the condition Im (%,) € 1. The curves
for 4, in figure 14 apply to Im (z) = —5x 1078 and w = T,/ T = 0.4 and their extension to the
right are given by the appropriate curves of figure 1¢, d: notice the scalings by x and x? and
the different scales of the ordinate axes. - '

The striking increase in the contribution of 4, to 7 when one passes from the off-resonance
region into the combined regions (i), (ii), (iii) can be understood as follows. The integrand of
(3.9) has singularities just off the real axis directly above or below the points given by

= 2a(w) : (3.274)
and P =—a(w). (3.275)

For given frequency only one of these close singularities occurs within the region of integration.
Close enough to actual resonance (3.24) will apply and we can solve (3.27) for w to find

0=w—-2x1=0() | N (3.284a)
or ‘ wo=w+x;1 1 =w,(r). (3.285)

These relations can be interpreted as the resonance frequencies for a pair of molecules
separated by r with polarizations parallel to (]|) or perpendicular to (1) the intermolecular axis.
The Boltzmann weight in (3.9) effectively limits the range of integration to some region r > 7,
(say). When contributions from resonating pairs occur in this effective range they actually
dominate the integral, and this happens in the frequency interval

L w0;—=2x;75% < 0 < ;4 ¥y 750 o (3.29)
or for Re(z) in the interval . _ |
—(a/1)* < Re(2) < 2(a/r,)%, (3.30)

which is independent of the approximation (3.24). Recall that a is the Lennard-Jones length
parameter whereas 7, is an effective hard-core diameter.

If we imagine the interval of Re (z) of figure 1 scanned with increasing frequency (from right
to left) we would see a gradual increase of Im (%,) by several orders of magnitude when resonance
distances solving (3.274) (for axial polarizations) gradually move into regions accessible to
molecular pairs. The shoulders are due to the enhanced probability of finding a (resonating)
pair at the distance r = a of the minimum of the pair potential. As the frequency passes the
free-molecule resonance w; the resonance distance for axial polarization goes to infinity and
resonances for perpendicular polarizations become possible for (infinitely) distant pairs of
molecules. These resonances then replace the axial resonance. As the frequency is increased
still further the resonance distance for perpendicular resonances decreases and ultimately moves
into regions inaccessible to pairs of molecules with a drastic decrease of Im (4,) as a result.

Because the main contribution to Im (k,) in the line-wings region is from distant pairs of
molecules the quasistatic theory is adequate (provided only that the Doppler effect can be
ignored as it can sufficiently far from w;). On the other hand, the quasistatic theory may be
inadequate in the transition region. Here the main contribution comes from close pairs of
molecules for which molecular motion and quantal corrections may be important. In the
off-resonance region 4, gets relatively significant contributions from pairs of molecules for any
r > 1, and the quasistatic theory is expected to be adequate again.
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In the line-wings region the situation is particularly simple. Here the approximation
by am(—In2+in), [Re(z)l <1, | (3.31)

applies (and applies paftieularly well to Im (k,)). Recall also that in region (ii) the derivative
of k, in (3.17) is negligible compared to the term in Im (4,). We therefore find the extinction
coefficient in a line-wings region as :

T = 8mky(no)2[(1/n—2B,) k3 +5n(1 =4 In2) Ko +4n%] - - (3.32)

at sufficiently low densities. The terms in B, k3 and k2 a can always be ignored in comparison
with 4n? at optical or lower frequencies and when the condition (ii) applies, so we have

T = ink, a’[k*n +‘n2n2] SEE (3.33)

The first term in brackets is the one-body term, and this may be neglected except at densities
comparable to &3 or lower (corresponding to few molecules per cubic wavelength).

The result (3.33) may be compared with the experimental absorption of light in the w1ng
of the caesium line at 852 nm (f; = 0.718), for example. At densities where the one-body term
may be neglected the extinction coefficient in units of §nk,(nec)? has been found to be 15.4 by
Gregory (1942) and 17.4 by Chen & Phelps (1968). These experimental results should be
compared with the figure 4n2 = 13.2 of the present theory. R

In the literature on spectral line shapes a result like (3.33) for the absorption (due to external
scattering) in the wings of an absorption line is sometimes interpreted in terms of the width
of the line on the assumption that the shape is Lorentzian. Interpreted this way the imaginary
part of (3.31) gives the line width whereas the real part gives a shift of the resonance frequency,
see the discussion by Hynne (1974). A result equivalent to (3.31) has also been obtained by
Mead (19684, b, 1972) precisely as a line width and shift. But we emphasize that the two-body
terms are inadequate for a description of the resonance region (i), at least when the quasistatic
approximation applies.

We now summarize the main results of this section. The refractive index depends at low
densities essentially only on the three dimensionless parameters ny, a*/y, and 1,/ T, where a
and kg 7, are the Lennard-Jones parameters. (The imaginary part of m has an additional
explicit dependence on the frequency @ = ck,.) The main dependence is on the polarizability
per unit volume as predicted by the Lorentz—Lorenz relation. But the corrections for inter-
molecular correlations are comparable to the effect of the Lorentz mternal field factor: by
expanding the Lorentz factor in (3.19) we find for the real part of m:

(= 1)/4m = no (4 hy) (n0)? . o (3.34)

Table 1 shows that iz is commonly 10-209, of the Lorentz term *ﬂ: mdependently of den51ty
The broad features of the refractive index at low densities including effects of intermolecular
correlations are represented in a simple way by (3.11) with the hard-sphere result (3.15). It
contains the line-wings result (8.33) and describes off-resonance behaviour as well, except that
it cannot account for the temperature dependence at constant density.
To recover the line-wings result it may be helpful to rewrite the logarithm in (3.15) as

WS L 1 ) |
ln(—zr;3+a-l—§ikg ' : (3.35)



http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I\

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

326 F. HYNNE AND R. K. BULLOUGH

When a~1 can be neglected in comparison with 32 (3.35) becomes independent of 7, and equal
to —In2+in to a very good approximation. We note also that the hard-sphere result (3.15)
directly confirms the analysis made around (3.25).

To see in a simple way how the off-resonance behaviour is contained in (3.15), we may
expand the logarithm in powers of y/73. The first term of the expansion yields

8nnty®/(373), - (3.36)

and this becomes identical with the term obtained by Kirkwood (1936) in the static limit. But
the simple result (3.15) contains all but one of the 1nﬁn1ty of two-body terms (the term — iinkd B
from (3.75) appears separately in (3.11)).

The appearance of a length parameter 4 or 7, with magnitude a molecular diameter s1gnals
the physical reality of the concepts underlying the Onsager—Boéttcher result (1.2). In fact, it
is easy to see that the Kirkwood term (3.36) is contained in (1.2), concealed in the Béttcher
polarizability. We shall demonstrate in §5 how the Onsager-Béttcher relation is entirely
contained in the microscopic theory when the many-body terms of all order are taken into
account.

To achieve this goal we must develop the screened formulation of the theory for which the
foundation was laid in §4 of I. We therefore start in the 1mmed1ately following section’ by
reviewing the relevant results from I.

4, SURFACE-DEPENDENT PROPAGATORS AND BULK APPROXIMATION.

Equatlon (3.1) is the fundamental expression for the refractive index. It was obtained
through the expansion (2 9) of the susceptibility kernel in terms of the polarizability « and the
free field propagator F, and it therefore describes the refractive index in terms of elementary
scattermg processes taking place i in vacuum: molecules are polarized as isolated molecules and
fields propagate in empty space. ‘

Unfortunately, there is the difficulty with the result (3.1) that certain of the integrals in the
coefficients (3.1¢), (3.1d), ... at each order p beyond the second depend on the geometry of the
material system. This is the case w1th the last term of (3.1¢) (the one containing Fiz*Fy,), for
example :

Conceptually this means that (3.1) determines 2 shape-dependent refractive index. The
solution to this problem was sketched in I (see the discussion around (I 6.35)); and although
the principle of solution indicated there was not in fact used to reach the result (3.1), we can
infer from the discussion in I that the shape dependence of (3.1) must be entirely negligible
as long as all linear dimensions of V are large compared to the wavelength of the incident light.
Nevertheless, there remains the practical problem that the shape dependent integrals of the
theory are difficult to compute analytically or numerically.

The surface problem is best treated through the screened formulation of the refractive index
theory developed in I. The idea is to work with a ‘screened’ propagator & representing the
propagation of fields in the medium rather than in empty space. The screened propagator was
itself defined in I in terms of clcmentary scattenng proccsses in vacuum, and the series
representation (I 4.13), ' : S : Co

.fw = (na)p—l“‘ fV . fV Fllz;' Fzs e Fpo Gza...p d'x2 dxp (4'1)

p=1
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was derived for it. The first term of (4.1) equals F,, simply. The refractive index is obtained
in terms of & through (2.1) by using the expansion (I 4.10) of A in terms of &, namely

AIO = ”“Ualo"‘ E ("“ p+1J’ f 2" Fas oo Fopo Nias..po dx dxp' (4.2)

Here the correlatlon functions Y are deﬁned in (I 4.114a) and the first few functions are
he = Uy, Yms = UIZS’ Viosa = Upgaa+ Uy Uy, - - (430
in terms of generalized Ursell functions,
U= Glz L, Uygy = Grag—Gra— Gy — Gy +2, .. S (4.30)

which themselves are defined in terms of the generalized distribution f'unctlons (2.11) by
(I 4.12). The Ursell functions have the cluster property: they vanish rapidly whenever the
distance between any two of its arguments goes to infinity..

This means that if all points of an integral are ‘covered’ by Ursell functions then all
integrations can be extended to all space after the factor ||~ and the integration with respect
to x in (2.1) have been dropped. Such an integral is surface independent, and in general the
surface dependence of integrals is most simply appreciated when the integrals are expressed
in terms of Ursell functions. Therefore the expansion (4.2) is ideal for an analysis of the surface
dependence. We shall see that the entire surface dependence is actually isolated in the
propagators & this way, and we shall come to understand the physical meaning of the surface
dependence in terms of the properties of & . :

It is convenient to use a diagrammatic notation, see figures 2 and 3. The basic element of
a diagram is a set of black or white circles. Each circle indicates a factor no and represents
a point in space appeanng as one argument of an mtegrand broadly a circle represents a
polarlzable molecule. A line between two circles represents a propagator between the
corresponding two points. A smgle line represents F and a double line represcnts F.
Intermolecular correlation functions are represented by loops of dotted hnes, and a dotted line
c01nc1dmg with a full line (or double line) adds a cross to the line. When only two circles are
mvolved the loop degenerates to a line.

We use black or white circles to distinguish between correlation functions. In a dlagram with
white circles a dotted loop connecting p circles represents a generahzed p-body Ursell function,
U,ss...p» defined in (I 4.12). A loop of dotted lines represents an ordinary p-body distribution
function g5 _,, in a diagram with black circles. So itis 1mportant to dlstlngulsh the two kinds
of diagrams. NOthC in partlcular that dlagrams in white circles conceal the terms arising from
self-correlations. Such terms appear explicitly in the black circle notation as diagrams
containing closed loops formed by chains of propagator lines as in figure 3. Such terms represent

self-interactions and a closed loop of a single line, in particular, represents the radiation reaction

(2.14). It should also be noted that a generalized Ursell function as well as an ordinary
distribution function is symmetncal in all its varlables although the representatlon by a loop
of dotted lines cannot exhibit the full symmetry

In any refractive index diagram we have a “chain of circles connected by propagator lines,
and each circle implies an integration of the corresponding point over the region ¥ except when
the circle carries a dot. In diagrams without dots a factor |V'| =T, and the trace operation are
understood, the factor T, connecting the first and last points of a chain. The spatial


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I\

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

328 F. HYNNE AND R. K. BULLOUGH

e

Ax,x;0) = e+m+w+ﬁw+¢=@m+u.(a)

R | p——"4

o= = 0+0 + 09 + @0—0—9p + qoro—p +--+ ()
=040t = w + ()
— = +q>—:<_$:-¢:-;é+ ()
Hol s otowo+ o b arorors 4 et b 4o ()
JONRE U k‘Re{O'-O-l-Q--_-?:Oi-q-_r_-?__-y-l- q:-?_-a_-t_):d_-?{-q-i-ﬁ-_-_o::?

e —— ’.._-_.‘

N ——— ‘____ ...............

o9 & (1a)1Q0—p X 0+0 o 0

Im{e—oto—g} & (12)Im {o—o—p] * Re {oro]} + LiRe (emomems)

FiGurE 2. Dlagrammatlc representation of some results in the screened formulation. (a) The ngorously screened
expansion (4.2) of A. (b)—(¢) Expansions of each term of (a) through (4.1), but expressed in terms of Ursell
functions. (f) The refractive index from (a) in the bulk approximation. (g) The extinction coefficient in the
bulk approx1mat10n (#) Simplest example of the approxlmanon involved in the use of F for #. (i) The last
term on the right is associated with damping in propagation as described by F in the second term of (f), but
shown outside the bulk approximation.

arrangement of the circles in a diagram has no significance; it is usually convenient to draw
a chain of propagator lines horizontally whereas simple closed loop diagrams are drawn as
polygons. The slight modification which is needed to extend the diagram notation to describe
optical scattering also will be explained in III. -

Figure 24 shows the diagrammatic representatlon of the expansion (4.2) of A. Equatlons
(b)—(e) of figure 2 show the expansions of the successive terms of (a) arising through (4.1),
expressed in terms of the generalized Ursell functions (white circle diagrams). We need this
form in our discussion; but notice that the expansion of & is actually much simpler in terms
of the generealized distribution functions G as (4.1) shows. ’

Although it is sometimes useful to view the expansion (4.2) as a compact representation of
the unscreened series (2.9), the key to a deeper understanding of the refractive index is to regard
F as an entity in (4.2). We now show that it can be approximated by the closed form

exp (imkglx — x’|)
méx —x’|

Fx,x';0) = (VV+m22U) (4.4)
This is a generalization of (2.6) and describes the field at x from a dipole at x’, propagated
in a continuum of refractive index m. Because & clearly depends on the geometry we need
an approximation which disregards surface effects.

We work from the equation (I 4.3) for &, namely

Ho = Fm""fv fv Fro*Agy Fo dx, dixs. | S | (+5)
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The first step towards this ‘bulk approximation’ is to take the Fourier transform of (4.5) over
all space, after having extended the integrations to all space. In this step we neglect the divergent
parts from the surface terms which we want to eliminate. Denoting the Fourler transformed
approximation to & (x, x’; w) by F(h, ) we find

F(h,w) = F(h, w)+F(h 0)-A(h, ) F(h, o). ' (4.6)
By arguments similar to the one leadlng to (I 5.20), A(h,w), the Fourier transform of
A(x,x’; w), splits into longitudinal and transverse parts, and F(h, ®) similarly sphts

F(h,w) = (u —hh) —anhh. - (4.7)

h*
Here k, is interpreted as £, +i6 with & a positive infinitesimal. Thus (4.6) splits into 1ndependent
equations determining the longitudinal and transverse parts of F(h, w) separately.

- When the wavenumber % = |h| is small compared with a reciprocal correlation length, I,
A(h,w) is a constant isotropic tensor to a good approximation which means that the
longitudinal and transverse parts of A(h,w) are nearly equal. Clearly, A;(h,w) and A (h, »)
become equal in the limit 2—0. Indeed, contributions from the leading term noU and from
all terms of A(x, x’;®) containing a delta function 8(x—x’) as a factor (the self-interactions
discussed in §6) are strictly isotropic and independent of & when the surface effect is neglected.
And all terms with range of the order of a correlation length / are isotropic and independent
of k up to a term O((kl)?) for small 4. There are still terms at fourth and higher orders in na
which require the stricter condition & < &, rather than k < [~ for being constant and isotropic.
But neglecting such terms we may use the result (2.1) to get

Ay(hy0) % A, (ko) % (mE—1)/4n | (4.8)

valid for £ < [71. Note that the right side of (2.1) equals A (mk,, ) and that the wavevector

from (2.2) satisfies the condltlon mk < ™! at optical or lower frequenmes and away from the
critical point. L

A crucial step now is to extend the relations (4.8) to all positive k. In this approximation

we can readily solve the longitudinal and transverse equatlons from (4.6). The solutions

combmc in the result ' 4 ¥ U— hh " o
Fib,o) = — 5t

mt =R 9

which yields (4.4) by inverse Fourier transformation. The form (4.4)isa good approx1mat10n
to the translationally invariant part of & at distances |x— x'| large comparcd to a typncal

correlation length / (dcﬁned by (I6. 29) say).
_ The bulk photon propagator F satisfies the mtegral equatlon

F(x, x';0) = F(x, x’;’w)+TJF(x, x";w) '_l~=(x”, X;w)dx’,  (4.10)
which can be obtained from (4.5) by approximating A as
m*—1 :

Ax,x';0)~ —4n—U8(x—x’) (4.11)

and extending the integration to all space. The approximation (4. 11) v1ews the medium as a
continuum of refractive index m and ignores spatial dispersion.

24 Vol. 321. A
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The closed form (4.4) for a translationally invariant system will be used below to obtain a
‘bulk approximation’ to the refractive index. However, it isimportant to understand the surface
dependence of & . Intuitively, if & (x,x"; ) p is viewed as the average field at x (in the
medium) radiated from an oscillatory dipole probe at x’, we must expect from macroscopic
theory that & :p contains waves reaching x after reflections in the surface. To discuss this
interpretation without appeal to macroscopic theory we consider a ‘continuum approximation’
F to & for the ﬁmte system by usmg (4.11) for A but retammg the ﬁmte region of integration.
We then find for F,

N . 2.1 -
Fy(x,x";0) = F(x,x"; ) +”-zj4—u—1J‘ F(x,x";0) Fy(x",x";0) dx”. (4.12)
vV .
It is easy to show that the solution to (4.12) has the form

Fo(x,x';0) = F(x,x";0) +1(x, x'; 0), - (4.13)

where ? as a function of x is analytic at x’ € V;  satisfies an integral equation of the form

fx,x";0) = q(x,x";0) +— , X7 0) f(x”, x'; 0) dx”. B (4.1440)

Comparlson of (4 14a) with (I 3.2) in the approximation (4.11) shows that for any dipole p
we may describe - D as the average electric field induced in the medium inside V in response
to an externally incident ﬁeld q'p. The coeﬂicxent q is given by the exphcn expressxon

m:—1
4

q(x,x";0) = — f F(x,x";0) F(x",x';0)dx” (4.14b)
-v

in which —V denotes the complement of ¥ with respect to all space, that is V.and —V are

disjoint and their union is all space. (When Vis finite — ¥ is infinite, but terms oscillating with

finite amplitude at mﬁmty cancel against similar contributions neglected in F.)

Now it is plain that f(x, x’; w) contains all of the surface dependence of F,,. It has the character
of a wave coming into the region V from the outside. In the case where Vls_the half-space z > 0,
for example, we expect that f(x, x’; ) p takes the form of a spherical wave reflected in the
surface z = 0, formally emerging from an image dipole source at a point x” which is the mirror
image of x” in the surface z = 0. Compare Tai (1971) and the solutions by Sommerfeld
(1909, 1949) and Weyl (1919) to a similar problem in radio wave propagation discussed also
by Stratton (1941). (We thank R. E. Collin for this reference.) Note that the x, dependence
of the surface integral (I 6. 30) evaluated in I fully agrees with this view. But otherwise we have
not actually calculated F, from (4.12) or f from (4.14) to confirm this interpretation.
Nevertheless, we surely understand the nature of the surface dependence of &, and we shall
therefore now consider the surface dependence of the expression (2.1) for the refractive index
and the question of obtaining a surface independent theory.

We propose to obtain a translationally invariant expression for the refractive index from
(2.1) with (4.2)

m2
4n'

Z M,(na)?, M, =1, (4.15q)
=1

M, =Tr f . f Fro'Fas - Fpoyp Tpr gy p A, ..odx,  (4.15b)
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by replacing & by F and extending all integrations to all space. It is this prescription which
we take finally to define what we call the bulk approximation. The result (4.15) is exhibited
diagrammatically in figure 2 (f) where a heavy line represents F. Equation (f) of figure 2 is
similar to (a) except that heavy lines replace double lines. Also the dots in two circles in (a)
indicating that A(x, x’; ) has the two free variables x and x’ are absent in (f) because the
expression in m is a constant. Strictly speaking there is no integration with repect to x, in (4.15).
Originally in (2.1) there was an averaging over x, and although this step is now superfluous
the omission of a single dot in the diagrams of figure 2 (f) gives the most consistent notation.

‘The question remains if it is actually possible to extend all integrations to reach the bulk
approximation in (4.15). It is clear that the integrals in (4.15) do not in general converge
through the correlation functions. At the fourth order, for example, the correlation function
Y444 contains the term Uy, U,, as (4.3) shows; and from this term we get a contribution to
M, ‘

Tr f f FroFos Fau T Uy Uy dx, dx; dx,. A :(4.16)

Here conﬁguranons in which the distances le xg| and |x,—x,| are both comparable to a
correlation length will give a finite Uy, U,, no matter how large the distance between the two
groups of points xl,xs and x,,x, is made. But nevertheless, the integral (4. 16) converges
because the product of the three propagators yields a factor R™® exp (i3mk, R) asymptotlcally
as the distance R between the two groups of points becomes large

Qulte generally the integrals in (4.15) are convergent. through the combmatzon of Ursell
functions and propagators. In any integral of (4.15) there are always at least three propagators
between any two groups of points not connected by Ursell functions. This conclusion follows
from the explicit expression (I 4.11a) for the Y functions in terms of Ursell functions. For details
see the discussion in §5 of Hynne (1975).

Returning for a moment to the rigorous expressmn for the refractive index, (2.1) with (4.2),
we conclude that in this form the surface dependence has indeed been isolated in the screened
propagators. In the continuum approximation where Fy replaces & the surface dependence
arises entirely from the ‘reflected parts’ of the propagators Fp, the s defined in (4.14).

Now that we fully understand the surface dependence of the refractive index theory we may
ignore all surface effects: they are numerically insignificant. We shall therefore work from
(4.15) in the following section. '

We close the present section by noting a straightforward ‘consequence of the screened
expression (4.15) in relation to the unscreened theory of §3. We show how the factor 1/Re (m)
in the extinction coefficient (3.165) is eliminated in the screened theory by an explicit factor
Re (m) arising from the imaginary part of the propagator F. We have

Im{F(xx w)}—ch( )k"'U+0(k2|x x| T (4 17)

at small dlstances lx x| Consequently we get a factor 2 2 Re (m) k3 from any Im(F) propagator
covered by an Ursell function (which is short range). The result for 7 is shown in figure 2¢
up to the fourth order in na (terms containing three propagators F). ‘ .

It must be noted, however, that there are terms at fourth and all higher orders contamlng
F propagators which are not covered by Ursell functions. For example, the last three terms shown
in figure 2 (g) coming from (4.16) contain Uy, U,, which does not cover any of the three Fs.

24-2
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We have introduced an auxilliary element of diagram notation ad hoc: a lme in hcavy 'dots
represents [2 Re (m) k8]~ Im (F). * : :

The simple result (4.17) actually assumes that m is real in F. This assumption can be analysed
in the unscreened theory by utilizing the exact equivalence of the screened and unscreened
formulations. We first explain the precise consequences of the bulk approximation at the lowest
order. Comparison with the rigorous expression for & shows that the bulk approximation
means replacements like the one shown in figure 2/ in addition to the neglect of surface effects:
the action of the kernel A between F and & in (4.5) becomes replaced by a simple multiplication
in (4.10). Now, the effect of an imaginary part of m shows up first in the term arising from the
last one exhibited in figure 25 in its contribution to the imaginary part of the screened two-body
term. In the bulk approximation this term is the product of two factors as figure 2/ shows.
The imaginary part is therefore a sum of the two terms shown in figure 27 in which the second
one is shown outside the bulk approximation to exhibit its appearance in the unscreened theory.

The second term of figure 27 is associated with an Im (m) in the propagator F. To see this,
note that an Im (m) in F must come from the factor 1(m?*—1)/m in (4.10), which itself comes
from A in (4.5). From the iterative expansion of (4.5) it is now clear that the middle of the
three propagators in the last term of figure 25 comes from A, and the last term of figure 2¢
contains the imaginary part of pfecisely this middle propagator. The last term of figure 27 is
therefore associated with damped propagation. It is intimately related to real multiple
scattering as we show in III, and it plays an important role in the derivation of the Einstein
light scattering equation discussed there. In III we shall give a more careful discussion of
damped propagation, and we shall show that the terms assoc1ated with dampmg really do not
participate in the elimination of the factor [Re (m)]™".

5. CAVITY FIELD AND ONSAGER REACT!ON FIELD

Unfortunately the expansion (4.15) is still not yet well defined. We need expressions for the
contrlbuuons from small spheres and from self-correlations associated with an F propagator
corresponding to the definitions (2.7) and (2.14) for F. The generalization of (2.7),

lim | F(x,x’;0)dx’ = (—irn/m?) U B o (5.1)

v->0

is 1mmed1ate, but the generahzatlon of (2.14),
fF (x,x’; w) 8(x x) x = 3(w) " ‘ (5.2)

is not so clear; we shall return to it shortly. We shall refer to a contribution arising from the
use of (5.1) as a ‘screened Lorentz term’ and to one from (5.2) as a ‘screened self-interaction’.

'For the moment we recall the effect of the small spheres and the self-correlations across F
propagators in the unscreened formulation, (2.1) with (2.9). The terms from (2.7) and (2.14)
sum to yield the Lorentz—Lorenz relation with a complex polarizability, (3.2). The small
spheres provide the Lorentz internal-field factor }(m?+2) (appearing as the reciprocal quantity
on the left side of (3.2)) and the self-correlations directly across F propagators sum to the
complex polarizability (2.16), which accounts for the effect of radiation reaction.
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In the screened formulation, (2.1) with (4.2), the corresponding contributions, (5.1) and
(6.2), have a similar effect: indeed we shall show that these terms sum to yield the
Onsager-Bottcher relation (1.2). We shall find that the small spheres give a cavity-field factor
3m?/(2m?*+1) and the self-correlations directly across F propagators provide an effective
polarizability like (1.35). Thus the use of small spheres and self-correlations may have appeared
to be a purely technical artifice but now we see that these terms have actual physical
significance. Consequently we shall need to discuss several issues in this section.

- First, we must review the model of Onsager and Béttcher in order to identify the concepts it
involves at a macroscopic level. These concepts are subsequently used for comparisons at
microscopic level. Next we must scrutinize the integral (5.2) in order to give it its proper
meaning. Then finally we can demonstrate that the contributions arising from (5.1)-and (5.2)
sum to a relation of the Onsager-Bottcher form (1.2).

We now briefly describe the macroscopic model of dielectric polarization due to Onsager
and Bottcher (see also Bottcher 1973 ; Bottcher & Bordewijk 1978). Ohsag'er (1936) calculated
the local field on a molecule for a model in which a reference molecule is placed at the centre
of a spherical cavity of radius z in a dielectric continuum of dielectric constant € = m®. The
local field is here the sum of the field E, in the empty cavity and the reaction field E, of
the dipole which actually is present in the cavity. If the electric field in the medium far from the
cavity is uniform and equal to &, and if the actual dipole moment of the rcference molecule
is denoted by p, we then have

3m? .
© = 3mr1 (53)
2 m—1 | '
r == 2m2+lp sp. , . (5.4)

Onsager used the modcl to treat a polar fluid in which the distinction between the
contributions E, and E_ is essential. Bottcher (1942) applied Onsager’s model to a fluid of
polarizable nonpolar molecules and by eliminating E_, E, and p from the equations,

p=a(E+E,), S (58)

me—1 SR - .\

"= 8’ o | (5.6)
he obtained the relation ’ ‘ ‘
m—1\(2m+1\  a - ‘

( 4m )( 3m? )_nl—ioc’ o ; '(57)

which we call the Onsager—Béttcher relation. It compares with the complex Lorentz—Lorenz
relation (3.2), but the Lorentz internal field is replaced by a cavity field, and the radiation
reaction in the complex polarizability is replaced by the Onsager reaction field.

Before we derive (5.7) from the microscopic theory we must discuss (5.2). As it stands, the
mtegral is certamly divergent at the s1ngular1ty x = xof F(x,x’; w). However by use of (4. lO)
we may rewrite (5.2) as

©)U = JF(x, ) S(x—x) dx’ + 2 fo,x o) F(x,x;0)dx’.  (5.8)
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The first term is the radiation reaction given by (2.14). To evaluate the integral in the second
term, we split each of F and F into longitudinal (Coulomb) and transverse (radiation) parts

F(x,x";0) = VVl‘x—x"I“1+R(x,x’;w),_ ‘ o (5.9a)
F(x,x';0) = mVV|x—x'|'+R(x,x";0) = (5.95)

and observe that the cross-terms between Coulomb parts and radiation parts in the integral
in (5.8) vanish by.orthogonality in k-space (or h-space in the notation of (4.7)). The
contribution of the radiation parts can be evaluated by Parseval’s theorem. It combines with
the radiation reaction from the first term of (5.8) to give a screened radiation reaction (compare
with Doniach 1963)

%imk3 U. | A (5.10)

The contribution of the Coulomb parts is divergent; but we may write the complete
self-interaction (5.8) symbolically as

—zlmk3+ l)f r4dr. S - (5.11)

The divergence problem arises because & (x, x; w) - p describes the average field at x from
a dipole p at x’, averaged without restriction on the molecular configuration in relation to the
two points. But physically only molecular dipoles appear in the theory and all self-interactions
are either radiation reaction or self-interactions of a molecule via surrounding molecules. And
in such processes the repulsive forces between molecules prevent any surrounding molecule from
getting close to the reference molecule and hence prevents divergences like that in (5.11). Thus
the divergences are due to the ‘probe’ character of % and in the rigorous theory the
divergencies must always cancel exactly. It is when the bulk approximation is applied that the
trouble is introduced: the replacement of & by F evidently destroys the perfect balance of
the compensating parts. We therefore see that (4.15) is only a formal series: it contains
divergent terms and is presumably divergent as a whole.

On the other hand looking at (5.11) it is plain that it fails to account for the correlations
between the reference molecule and its surroundings, namely the fact that any molecule makes
itself a ‘cavity’ into which it prevents other molecules from penetrating. We shall see in §6
how this effect appears naturally in the rigorous theory. But we may here introduce the
exclusion effect in (5.11) simply by excluding a spherical region about x from the region of
integration. The radius of the excluded region must equal a molecular diameter; we may denote
it by @ as in the macroscopic model. We then get (compare Mead 1960, 1962)

_ g, 2 mi—1 o
| Zimk} +aa gl (5.12)
We see immediately that the second term in (5.12) is almost identical with the coefficient of
the Onsager reaction field, in (5.4). The only difference is that the denominator in (5.4),
2m?+ 1, is replaced by 3m? in (5.12).
The result (5.12) confirms that § can be regarded as a generalization of the Onsager reaction
field, but the molecular diameter 7 is as yet undetermined. The exclusion effect is naturally
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described in terms of correlations, and the natural way to introduce it in (5.11) is by inserting
a pair-correlation function in the integral

; 2(m?—1 © . )
§= §1mk§+ﬂ;2——l f r~4gy(r) dr. ‘ (5.13)
0
This expression implicitly defines an effective molecular diameter as

| a= [3 Jw r~4g(r) df]_é o (5.14)

0
so that (5.13) and (5.14) together give (5.12). We see that ¥ generalizes both the radiation
reaction (2.14) and the static Onsager reaction field (5.4). Even so these manipulations of the
divergent integral (5.2) are made only to motivate a rigorous microscopic definition of the
Onsager reaction field which we give in §6. The final result will not depend on 3.

For the moment we think of § as defined by (5.13). We now wish to sum all of the (pure)
screened Lorentz terms and self-interactions. These come from the terms of the correlation
functions Y, which are either constant or contain one or several delta functions each connecting
consecutive arguments. The actual summation will be carried out quite easily in what follows
by using an integral relation among the appropriate kernels. (See also the simplified argument
around (9.1) in the summary of results.) But to exhibit the kind of terms we are dealing with
and their origin we first note the contributions from the lowest orders. At orders p = 2, 3 and
4 in (4.15) the relevant terms arise from the following terms of the functions ¥,,, ¥,,,, and ¥,,,,

n"18,,—1, ; ,
‘ n'zaﬁ Bg3— 1 (8104 035) +2, - » v | Y (8.15)
%015 893 83 — 17?815 0y 8,5 03y + 855 854) + 2n—1(312 +8y3+85,) —5.
(Note that, for example, the term =1}, from Y,,, is not included here because the delta function

is not directly across any F propagator.) The terms (5.15) substituted for ¥, Y55, Yigaer** * * *
in the relevant terms of the series (4.15) give rise to the following contributions

u+tt,
u?+ 2ut+ 282, (5.16)
u® + 3ut+ 6ut® + 56,

apart from a common factor ne.. The notation is ¥ = $a and ¢t = ($n/m?) na.
We now denote by W the sum of all these terms multiplied by the factor na together with
the first term of (4.154), na itself. We then have

_ (m*—1)/4n = W+C (5.17)
in which C denotes what remains from the series (4.15),

C = md(na)? +mf(na)d + Cy n2a®+ [(167/3m?) na + 250 ml(na)2+ ..., (5.184a)

my = Tr f_v Fio Tou(g1,— 1) dx,, (5.185)
m3 =Tr f-—v J‘_va" an'Tal(glzs _glz_gzg_g31+2) dx, dx,, » (5.18¢)

C,=Tr f Foo oy Ty(g0—1) dx,. o ' (5.184)
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The notation for the coefficients is the following: the superscript zero signifies principal value
integral; the lower case signifies that the self-correlations in M, are omitted in m,,. Note that
C contains contributions of powers of # and ¢ mixed with terms containing correlation functions.
Now actually to sum the terms like (5.16) we use (I 4.9),

AKm = JIIO_JV JV Ay Foy Mgy dxydxg. | (5.19)

Now refer to (2.1): we form the expression on the right side there in two different ways by
using A, from the left side of (5.19) for one way and the expression on the right side of (5.19)
for the other. We thus have an identity. We now use the screened expansions (in terms of &)
for each kernel and take the bulk approximation (replacing & by F and ¥ by all space). Because
we have an identity the sums of terms like (5.16) on either side of that identity must be equal.
The left side provides W simply. The right side has two terms. In the term derived from the
integral in (5.19) the propagator &, becomes F in bulk approximation and simply gives a
factor (—#n/m?) U. Then the remaining product of two As gives a factor W2 So the integral
in (5.19) ultimately provides (4n/m?) W2,

The contribution from the term JI,, in (5.19) is more dlfﬁcult We offer a proper analy51s in
the next section so we just sketch the argument here. The polarization propagator JI,, is given
explicitly in terms of F by (I 3.13) and this is reproduced in (6.2) below. We evidently need
an expansion in terms of &, that is formally in F. However, from the fact that the unscreened
expansion (6.2) is recovered from the screened one through expansion of each & by use of
(4.1) we infer from the unscreened expansion (6.2) that a term of JI,, with p propagators F
yields precisely one term, namely na (52)P. (There cannot arise any other type because the
first and last points, X, and x,, are always correlated in any term of JI,,.)

The sum of all terms like (5.16) from JI,, together with the term na is then clearly no/ (1 — o).
So from (5.19) we see finally that the sum W of all pure contributions from (5.1) and (5.2)
must satisfy

W = na/ (1—30) + (4 /m2) W2, (5.20a)
or W1 —(4n/3m?) W] = na/(1—3a). (5.200)
Now solve (5.17) for W and substitute the result in (5.205). This yields
m*—1\(2m*+1\ _ a  m*4+2 dm '
( in )( 3 )_nl—§a+ 3 C+§E§C2. v (5.21)

- The formula (5.21) is evidently a generalized form of the Onsager-Bottcher relation. When
truncated at the first term on the right it is precisely of the form of (5.7). The left side contains
the inverse of the cavity-field factor: the leading term on the right is of the form ny and ¥ is
an effective polarizability

o

=1 % - A (5.22)

Evidently 9, in which § has been temporarily interpreted by (5.13), is a natural generalization
of both the complex polarizability (2.16) for an isolated molecule and of the static polarizability
(1.356). Thus (5.21) generalizes the Onsager-Bottcher relation by including correction terms
in C: these corrections are of order O((na)?) because C is. The result (5.21) is then, in a sense
to be explained, ‘exact’. :
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The result (5.21) is actually an exact consequence of the ‘bulk appproximation’ (4.15) (some
of whose terms are exhibited in figure 2 (f)). However, it is not usable because the starting point
(4.15) is purely formal. As explained, the bulk approximation introduces divergences into the
separate terms of the theory. Indeed, recalling that (5.13) was put into the theory ‘by hand’,
a divergence really appears at leading term in (5.21), namely in ny, where § is not defined.

To make sense of (5.21) we first show, in §6, that in the exact theory the first term of (5.21),
nP, is replaced by nf with £ a well-defined and wholly natural effective polarizability. We also
obtain a natural microscopic definition of an Onsager reaction field s and show that in a well
defined decorrelation approximation g is related to £ as 5 to ¥ in the macroscopic theory, (1.35).
In this fashion we show how the Onsager-Bottcher relation (1.2) is contained in the microscopic
theory. In §7 we shall deal with the higher terms of (5.21). Our general procedure is to use
the formal result (5.21) as a guide and as far as is possible replace its right side by appropriate
expressions in terms of 8, because £ does not involve the bulk approximation.

6. EFFECTIVE POLARIZABILITY

In the prev1ous section the gcnerahzed Onsager—Béttcher relation (5.21) was derived through
the identity based on (5.19): the effective polarizability ¥, (5.22), arose from the term JI,; in
(6.19). The result was formal because the reaction field § was not well defined, though (5.13)
was used to show what sort of expression it surely ought to be.

Fortunately, the kernel JI,, in (5.19) does actually contain a microscopic expression for an
effective polarizability with all the physical properties we expect from such a quantity.
However, to see this we must analyse the unscreened expressions (I 3.12) and (r3s. 13) for JIn
and JI,;, namely

B . w . N -
Jin = n}“aU8m+le oP+l J-V fv Fia'Fas... Fponi®ni® .. nltnltdx,...dx,, (6.1)

) . ® : . ; :
My = naU8yy+ 3 (na)? J’ e L Fua-Fas o Fpo Gus. po 0y ... dX,. (6.2)
p=

The polarization kernel JII* applies to an instantaneous configuration {x}} of the molecular
system with molecules at sites x}“, Jj=12,...,N, for N molecules, and

nit(x) = Ej) S(x—xi™) (6.3)

is the instantaneous density of molecules. The kernel JII? gives the polarization induced in the
many-body system in response to an external field E(x, w) as the linear relation (I 2.31),

Pin(x, ) =f T (x, x'; 0) E(X', 0) dx’. (6.4)
14

The kernel JI is the average value of JI'* and, cv1dently, it determines the avcragc polarization
induced in response to E.

We now define the effective polarizability of a given molecule in the many-body system in
fixed configuration as the coefficient in a linear relation that determines the dipole moment
induced in a molecule as a result of an external field acting on that molecule. In this definition
the external field is applied only to the chosen molecule. Note, nevertheless, that this ‘external

‘25 Vol. 321. A
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field’ may still embrace effects of other molecules: in the macropscopic model it is exactly in
this sense that the cavity field acts as an external field to the reference molecule.

~ To obtain the effective polarizability of a molecule at xj* from (6.1) we simply omit n{*, ni®,
and 8, and set x; = x, = xj", These changes ensure that an applied field acts on the molecule
at xj* and that the result is the polarization of that same molecule. The result can be written

A (w) ='a(w)U+a2(¢)g7m(3c;n x;ﬂ-w) " | (6.5)

in terms of the screened propagator for the system in an instantaneous state, deﬁned by (I 4.1),

g'-m— Fm"‘f f Fro- ng F dxzdxa S ' (6.6q)
and given explicitly by the iterative solution, o
0
Fin = p§1 aP-1 fv fv Fia'Fag - Fponi®nf® .m0 dx, ... dx,,. (6.60)

The first term of the sum in (6.65) is F,, by definition. Plainly, the average value of 18 is
F, as given by (4.1). The kernel IT'* in (6.64) is defined by T2 = nin qU8,, (see (I 2. 30)
and so it is essentially a polarizability density (because it is strictly local).

It is now natural to define the effective polarlzablhty of a molecule at an arbltrary pomt
X as '

o) = T A (@) O(x—x}") (e
and we may then express JI" in terms of Bi?(x, w) as

JIin(x, x'; 0) = nfP(x, 0) §(x —x') + a2 F P (x, x’; 0) Ej}tzj 8(x—xi?) J(x’-—x%“); (6.8)

This result shows that fi* is essentially the sum of all those terms of JIS which have a
self-correlation connecting X, and x, plus the polarizability of an isolated molecule (contained
in the first term of JI{{;) The higher terms of B correct the polarizability for all interactions
of a molecule with itself via surroundmg molecules or through empty space (radlatlon
reaction).

From (6.7) we finally obtain the average effective polarizability of a molecule at x as

B(x,0) = {f*(x,0)) =»n“<213 BP(w)d(x—x)) - (6.94)

or explicity = ‘

0
B(x;,0) = aU+a Zl (ner)21 fv fv FipFog .. Fyy Grog gdx, ... dx,. (6.95)
pom :
This is now the quantity we shall normally refer to as the ‘effective polarizability’: it is well
defined and owes nothing to the bulk approx1matlon the first term of the sum multiplying
atis Fj, = &k3U. : . . ‘ :

We shall now ﬁnd it instructive to introduce a microscopic expresswn for a reaction field
-of Onsager’s type, although the result will not figure.as such in our final expressions in § 7. The
cobjective is to find the relation between the reaction field and the effective polarizability, and
in particular to see whether the macroscopic relation (1.35) applies. The result will help us
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in assessing the validity of the macroscopic models introduced in §1, which is one purpose of
the paper. < = = :

To define such a reaction field we have to analyse the instantaneous situation and (6. 7) still
further. It may be helpful therefore if we first consxder the expansion of the macroscoplc
expression (1.35) namely : ‘
o/ (1 —5e) —oz+oz”s+a3s’+ (6.10)
in the context of the macroscopic model. From (5. 4) and (5 5) we may write the dipole moment
induced in the reference molecule

P =T%ZE° = (a+aB+a’R+...) E,. - - (6.11)

Equation (6.11) states that the dipole moment induced in the reference molecule equals the
effective polarizability times the cavity field. Note that E; is the field in the empty cavity so
it may be said to act as an external field on the reference molecule (compare the remarks
surrounding the definition of the effective polarizability below. (6.4)). . :

We may think of the polarization of the reference molecule according to (6.11) as takmg
place in stages. First there is the direct effect of the cavity field on the molecule which produces
a dipole aE,. This dipole creates a field which polarizes the surrounding dielectric, and this
polarization in turn gives rise to a field 5¢E, on the molecule, the reaction field of the initial
dipole ¢ E,. This reaction field saE, induces an additional dipole moment a5a¢E, = a*sE, in
the molecule. But this additional dipole creates its own additional reaction field sasaE,; on
the reference molecule which leads to yet an additional dipole moment, a32E,. This sequence
of processes sums to the closed form given in (6.11) which contains the effective polarizability.

Note that 5 may be said to describe the reaction field of a fixed oscillatory molecular dipole.
Indeed, the idea of a reaction field was conceived by Onsager for the static equivalent of this
dipole in a theory of the dielectric constant for polar molecules. When a fixed molecular dipole
is replaced by a polarizable reference molecule the reaction field acts as a positive feedback
enhancing the polarization of the molecule, and thlS mechanism glves rise to the concept of
an effective polarizability. ‘

The series in (6.10) for the effective polarizability is actually more in the spirit of the
molecular description than is the closed form to which it sums: we now show that (6.5) contains
a series expression of the same form.

In the processes involved .in the effective polarizability, ‘it is apparently important to
distinguish the selected molecule from all the molecules that surround it. We therefore write
the instantaneous density (6.3) as a sum of two terms:

n‘?‘(x)-n,«“(x)+n (x), S o R ‘(6.12a)
) = de =), nf*(x) zs(x—xm> e ‘«;.121,)

Thhs, nif (x) represents the densxty of moleculcs when the molecule at x has been removed
whereas n}"(x) is the molecular density of a system consisting of the isolated reference molecule.
. We shall also need to split the kernel IT!® similarly:. . .

A (x, x5 0) =P (x, X' ;0) + TP (x, X" ;0); (6.130)

" (x, x'; ) = nif(x) ¢(¢) Ub(x—x"), (6.135)
IER (x, X3 0) = nif(x) a(w) US(x—x). (6.13¢)

25-2
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Further, we introduce a propagator & i for the system in fixed configuration with the molecule
at xi® removed. Comparison with (6.6a) for &' shows that ' must satisfy the integral
equation

F(x,x';0) = F(x,x";0) +f f F(x,x";0) THA (X", x"; 0) FIP(x", X' ; 0) dx” dx".
v v
' (6.14)
It is related to " by the integral equation

Fin(x,x";0) = FP(x,x;0)

+j J Fh(x,x";0) TH (x", x";0)  F(x",x';0) dx” dx".  (6.15)
vJv

To prove (6.15), substitute the right side of (6.14) for 1 in (6.15) and reduce the resulting
equation by use of (6.15) itself. By combining the terms IT/* and IT}? by means of (6.13a) we
then see that &1 as defined by (6.15) with (6.14) satisfies (6.6a), which can be assumed to
have a unique solution.

We now define the instantaneous reaction field coefficient of a molecule at xJ* as

o (w) = FIP(xin, xi0; 0). ' (6.16)

From this we may then define an average reaction field coefficient for a molecule at an arbitrary
point x corresponding to 5 in the Onsager—-Bottcher model as

o(%,0) = 1"KE ol (w) S(x—xi")> (6.17a)
J
or explicitly, from the iterative solution of (6.14),
s(xy, 0) = 21 (na)?t J.V fV Fio'Fag-o. Fp1 Gy g gdX, ... dx, (6.17b)
q-

in which the first term is F,, = 2i£3U. Thus, ¢(x, 0) ' p is the averagé reaction field of a molecular
dipole p at x. The correlation function G, ,,; , is defined by

Gijas..q = 1 ICL 8(x, —xJ") 2 (x,—xi) ... B (x,—x{")). (6.17¢)
J k#j 1#§

It can be obtained from the distribution function G,,; , which appears in (6.9%) for f by
omitting those self-correlations that connect the point x; with any of the other points
Xy Xgy o0y X

It is important to realize that ¢ does not include all self-interactions of a molecular dipole.
Classically, it may be thought of as representing the self-interaction of a fixed, oscillatory,
molecular dipole, a generalization of the self-interaction of the permanent, static, molecular
dipole considered by Onsager. Although the generalization is not easily realized physically it
is important for understanding the macroscopic model.

We now show how the effective molecular polarizability # (which contains all self-
interactions) can almost be expressed in terms of 4. By substituting (6.15) in (6.5) and using
(6.5) in the result we get

Bi* = al +at[af +a~ e (fi" —al)]
= alU +ad™ " (6.18)
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Equation (6.18) can be solved for " to give

Bin () = a(w) [U—diP(0) a(@)] . (6.19)

The result (6.19) has the form of the macroscopic Béttcher polarizability (1.3 ), but it applies
to an instantaneous situation. We wish to obtain a corresponding relation between the average
values f and o.

We first note that fi(x,®) and ¢(x,w) are actually surface dependent and may depend on
the position of the point x in relation to the surface of the region V containing the molecular
system. This surface dependence may be said to be inherited from the propagator & (although
the average of &' does not appear as such in f or ¢). We therefore understand the surface
effect of f and ¢ qualitatively in terms of ‘reflected waves’ from the analysis of & and its
approximation Fy, in §4. Physically it is quite natural that the reaction field from an oscillatory
molecular dipole in a finite many-body system must contain waves reflected in the surface; but
the situation differs from the one discussed in §4 because we consider the radiation from a
molecular dipole here, and we cannot expect any simple macroscopic approximation to apply
in detail. The important point is, however, that we almost certainly can neglect the surface
effects of f(x,w) and 4(x, w) forall points x well away from the surface of V.

When this condition applies f(x,w) and ¢(x,w) must therefore be isotropic tensors,
independent of x, to a good approximation. We expect from the analysis near (I 6.30) that
we need only exclude a surface layer of a few wavelengths thickness, and this is negligible in
volume in comparison with |V| except for extraordinary geometries. We may therefore define
x-independent scalar quantities #(w) and ¢(w)} by averaging over the region V and over
directions. These quantities depend formally on the shape of ¥V, but numerically the dependence
is negligible. We therefore have : o

B(x,0) ~ p)U, plo) =4V Tr L B(x,0) dx,  (6.200)
Co(x,0) ma(w)U, d(w) =3V Tr,J‘V o(x',a)), dx. o (6.200)

We now come to the question of whether there exists a relation between the averaged
quantities (6.20) which is like (6.19) for the instantaneous ones. We therefore try

© . ,
_'2 a?+14p ‘ (6.21)
p=0

f~

l—aa

as an approximation. Tdrass'ess this approximation we expand the right side of (6.19) and
substitute the series into the expression (6.94) for f. The result is the expansion

pxo)= 3 aﬁl(w’) (2 (x,0)y, (6220

in Wthh o | | (omp(x w)) =n"t (Z [am(a))]p 8(x—xi)>. (6.22b)

The terms of the expansion‘ (6.224) are shown in dlagrammatxc notation in figure 3 (a—d)
apart from a trivial factor. We seethat {4'"P(x, w)) is represented by the series of all diagrams
with precisely p closed loops of chains of propagators emerging from the common first and last

t The typeface distinguishes scalar () and tensor (4); it is also clear which is which from the context.
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nas = 8 & 9 + (Vi-oté) + (¢)+ éaY;?-r Olg':}-i- af?) 4. " (a)
\»l‘m<amz>- ®+2§3 ( +2¥+ 2a&+ a@)-l---' ®

w(a11%) = cib-c-scﬁj}m ‘(c)

nad ™y = cgg .|.’...  ‘ - | . . | . (d)

iz @ eal s (Weoeng)es 0
FIGURE 3. (a)-(d) Self-interactions contained in the effective polarizability f, as given by (6.22). (¢) The term in

o* from the expansion of the approximate form (6.21).to be compared with the corresponding term of the exact
_expansion of B shown in (8).

point representing the reference molecule. In particular, o(x,w) = {(4'*(x,)) is the sum of
all diagrams with precisely one such closed loop. It is plain that the approximation (6.21) must
involve a decorrelation in which, broadly, the average of a power of ¢'%(x, ) is replaced by
the power of the average of !%(x, w). :

- We can see an example of this decorrelation approximation by comparing, for example,
(o'"¥(x,w)) and {4'*(x,®))?, given in (b) and (¢) of figure 3. The similarity of structure is
obvious, but we note a significant difference in the terms with four propagators: the three-body
distribution function in the term with two ‘two-body loops’ in () is replaced by a product
of two pair-distribution functions in (¢). Moreover, the last term shown in () appears to be
completely absent in (¢). The approximation (6.21) can thus be characterized succinctly as the
neglect of all correlations between different closed loops. (Note that the last term of (5) has
four propagators F not two &s.) o

A more physical interpretation of (6.22) will make the meaning of this result clear. The
polarization of a molecule in a many-body system may be viewed as a sequence of more
elementary processes precisely as in the discussion of the macroscopic relation (6.11). First there
is a direct polarization of the reference molecule, as described by the polarizability . The field
of the resulting dipole polarizes the surrounding molecules, and this results in a field on the
reference molecule, the reaction field of the dipole. This reaction field polarizes the reference
molecule further, and the additional dipole moment in turn gives rise to an additional reaction
field via surrounding molecules etc. For a molecule at x in a many-body system in fixed
configuration, this sequence of processes is described correctly by the expansion of the right
side of (6.19) or by the closed form (6.19) itself.

When we take the average value to obtain f(x, w) we observe that two surrounding molecules
participating in two elementary self-interactions of the reference molecule are correlated; for
example, they cannot come arbitary close to each other. Actually, they need not be distinct:
one molecule may participate in several elementary self-interactions. This situation may also
be described as a consequence of correlation, namely self-correlation. This correlation explains
why the average effective polarizability cannot rigorously be expressed in terms of an average
reaction field, as the macroscopic model of Onsager and Bottcher supposes. We discuss the
implications of this observation in §8.
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We introduced the average reaction field g, (6.17a, b) with (6.205), because of its importance
in macroscopic theory and because it has enabled us to show that the effective polarizability
p, defined through (6.94, b) and (6.20a) ‘makes sense’. For f is defined naturally in terms of
a dipole moment induced by an external field on a molecule; it contains corrections for all
self-interactions; and in a well defined decorrelation approximation it can be expressed in terms
of ¢ in the way that macroscopic theory suggests. ‘

Nevertheless, the most important fact about #(w) is that f(x, ») i is actually contained as such
in JI as the average of (6.8) shows; it is therefore contained term by term in A and so by (2.1),
B (w) is contained term by term in }(m?—1) /%t (to neglect of any surface dependent anisotropy).
It is also exact and owes nothing to bulk approximation. Thus we can use it as a part of our
programme of transforming the formal result (5.21) into a well defined expression.

‘Now it is already plain what went wrong in the derivation of the Onsager-Bottcher relation
in §5, and how () should be used in (5.21). The formal polarizability = /(1 —$a) in (5.21)
derived from JI in (5.19) simply failed to include all of the self-interactions contained in JI and
the missing ones remain in the term C. Thus 8, which contains all self-interactions in which
a chain of F propagators begins and ends at the same point, has to replace ¥ in (5.21) and
the corresponding self-interactions must then be omitted from C. Thus terms like C;, (5.184),
are to be omitted from the series expression (5.184) for C. Indeed, because 8 contains all
self-interactions in which a chain of F propagators begins and ends at the same point and
contains no other terms, all such terms but only these must be omitted from C: C will therefore
still contain self-interactions without this property and will need further correction a programme
which is carried out in part in the next §7.

We now have the result

m2—1\ (2m®+ 1 mi42 , - ‘
)t o

instead of (5. 21) The nf is exact, and the prime on C remmds that self-interactions are removed

from it by the procedure just described: €’ is exact in the formal sense that it contains all the

terms now remaining in the bulk approximation once the self-interactions are removed. .
This way we can account completely for the simple Onsager—Bottcher relation (5.7) by

dropping the terms in C’. Then B
- (mP—1\[2m*+ 1 ,
( - )( 3 ) =np. (624)

Expressed in terms of orders of small parameters this step is justified only to neglect of O((ne)?).
On the other hand 78 sums an infinity of two-body terms of order O((na)?) (including all odd
orders in a small parameter a/a®, where a is some effective molecular diameter). Similarly, n8
sums infinite classes of three-body terms, four-body terms, etc. which are O((nx)3), O((nx)*),
etc. For the real part of the refractive index the first significant correction to (6.24) comes at
order 0((noc) ) X O((«/a®)?) provided the correlation length is small compared to the wave-
length (neglcctmg terms of relative order of magnitude O((k, l) ))-

In the next section, §7 we shall show we can improve on (6.24) to some extent. We are able
to take a partial account of the additional terms contained in (6.23). But to do it we are obliged
to make a decorrelation approximation comparable to that for (6.21). We then correct this
in part by taking account of the more important terms still remaining.
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7. GENERALIZED ONSAGER-BOTTCHER RELATION

To extend (6.24) we work from (4.15), and first sum all terms involving § including those
depending on intermolecular correlations; we show that we may rewrite (4.15) as

m2_1 @ » .
P p{]l mp(nP)? + Q, . (7.1a)
m, = Tr f f Fro Fas o Fiponyp T taas. pdxy o dxy (7.1b)

Here 7 is the (formal) effective polarizability (5.22), and y,y5 ,, is the ordinary correlation
function, which can be derived from the generalized function Y,; , by omitting all
self-correlations (terms containing one or more delta functions). It is given by (4.3a) when the
generalized Ursell functions are replaced by the ordinary ones. In (7.14) the term @ is the sum
of all terms of the series in (4.15) with at least one delta function not directly across a propagator
F. (There is of course a degree of freedom in writing products of delta functions because, for
example, d;,d,; = 0,,8,,. But it is to be understood that if a set of points are ‘covered’ by a
product of delta functions these must be written in such a way that each delta function connects
consecutive points of the set with the ordering determined by the chain of propagators.)

To prove (7.1) we first derive a relation showing how the Y functions behave when two
consecutive points approach each other,

Yis.p= n—.la(xj_xj—l) Yl23...(]—1>) (j+1)...b+zg';)§...p (7.2)

in which the function Z{§} , is continuous at x;_, as a function of x;. The generalized
distribution function G,,; , satisfies a relation similar to (7.2) in which the corresponding G
functions replace the Y functions and Z is replaced by another function with the same continuity
property. The relation (7.2) can now be proved by induction from a recurrence relation for
the Y functions in terms of the G functions, equation (4.2) of Hynne (1975). (Note that a p-body
correlation function there is printed in script fount because it contains an additional factor n?.)

From (7.2) we infer that Y,; , contains a term with ¢ delta functions, each connecting a
pair of consecutive points at ‘positions’ fy, f,, ..:,j, and no other delta functions, and that the
term has the form S

985, (1,1 81y3=1) *+ Oy0=1) Y12...(5,-1) (g 40)...p° (7.3)

Here the function y depends on the points x,, x,, ..., x,, with X3 Xgpp oees Xg omitted ; and
contains no other term with precisely the same set of delta functions.
By using the result (7.3) we may now write the coefficient M, of the series (4.15) as

Y123...p

M=% (7 mo-arist | (7.4)
P2\ g p—q’ P :
in which @, is the sum of all contributions coming from terms of ¥},; ,, with at least one delta
function not connecting consecutive points. The binomial coefficient in (7.4) arises because we
get the same term irrespective of which set of g out of p— 1 propagators F is covered by delta
functions (and yielding factors § through (5.2)). - ‘
By substituting the result (7.4) in (4.154) and defining

Q=3 Q,(m)? (1.5)

p=1
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2 __ 0 -1 —_ :

we get | mol_ S 'S (” l)mp_qn—asq+q. o (1.6)
41'c p=1 . . g=0 q R

We may rearrange the double sum in (7. 6) as a sum over q with p—g ﬁxcd followcd by a sum
over p—g. If we rename p—gq as p we thcn obtain

”’1;‘ = £ myar $ (” +§ Homere

p=1 g=0
P ’ o 3 -
which proves (7.1) with ¥ defined by (5.22). For the second equality of (7.7) we have used
the identity S : , ‘ -
‘ +q—1 - L e
< (p g -)'=(_l)q( q"b)' | S

The argument of §5 now brings (7.7) into the Onsager—Béttcher form; for the sum of all
pure screened Lorentz terms of the series (7.7) is precisely the Wmtroduced at (5.17) because
the self-interactions arising from (5.2) are already summed in 7. We may thcrefore wrlte (7.7)
as

m2

;1_ ) : ‘. :
I W+C +.Q o (1.9

in which C% is the series from (7.1) with the pure Lorentz terms omltted
CO = ml(n)? + [m3+ (161/3m) ml] (7)°+ ... - (1.10)

the coefficients m, are exhibited in (5.18). The series (7.10) compares with (5.18), but the term
in ¥ shown in (5 18a) is now concealed in m°(n)7) and the term in Cj is included in Q.
Comparlson of (7.9) and (5. 17) now shows that IR ' ‘

C=0C"+Q. ' ¥ - (7.11)
By solQing (7 .9)‘ for W and substituting in (5.201))» we _th‘e'refiore get (5.21) with c replaced by

C°+ @, namely
- fmE—=1\[2mP+1
() C5) =7+

The result is that, apart from @, the right 51de of (5.21) becomes a power series in ny. Now
we saw in §6 that 8 should replace 7 in the first term of (5.21) and at the same time all those
self-interactions in which the chain of propagators F began and ended at x, (i.e. at the reference
molecule) should be omitted from C. All of these terms are necessarily in Q. This of course now
suggests that we replace ¥ by £ in all of the hlghcr terms of the series C° making the necessary
omissions in Q.

We must say immediately that such a procedure cannot produce an exact result like the one
obtained for the linear term. But by accepting a simple decorrelation we reach a formula this
way which we believe is a good aproximation and which could prove of real practical value.
In any case, the analysis that follows provides valuable insight into the character of the

(C°+Q)+—(C°+Q) o (112)

26 Vol. 321. A
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corrections to the simple Onsager-Bottcher relation. These insights should help with any future
work which attempts to give a more exact analysis based directly on the unscreened
formulations. We sketch the beginning of such an approach near the end of this section.

To assess the possibility of replacing ¥ by £ in the series C® we must see whether Q contains
terms that eliminate the divergences of the powers of ¥ and produces powers of 8. As far as
the divergences are concerned this problem is analogous to the one discussed previously (Hynne
& Bullough 197%2) for the linear term, and we shall not discuss the problem here. However,
Q contains corrections of a different character as shown in the Appendix. These corrections
account for correlations between self-interaction loops belonging to effective polarizabilities
associated with different molecules.

As we indicate in that Appendix these correlations between loops contained in divergent
terms of @ are probably rather unimportant numerically. But there are terms in @ which
(broadly) represent such high degree of (self-)correlation between loops of effective polariz-
abilities at different molecules that no part is contained in powers of 9. These terms are wholly
contained in @ and therefore convergent.

The idea is therefore, as an approximation, to replace powers of 7 by powers of £ in (7.12),
to omit the divergent terms from Q (which compensate the divergences of the 77), and retain
the convergent terms of Q. This procedure represents a weak decorrelation because the weak
correlations ‘between different £’ are ignored this way; but the strong correlations are retained
through the convergent terms of Q. This procedure leads to a useful formula although we cannot
provide complete justification for it. We quote it below when we have considered the simplest
of the convergent terms of Q.

At order p in na the contributions to Q arise from those terms of Y 93...p» Which contain at
least one delta function §,; connecting non-consecutive points X, and x,, and which do not
contain &, ,. At order p one term, as referred to here, is the complete contribution from Y,;
with a given product of delta functions, and we are interested in those giving a convergent
integral when substituted for ¥;,5 , in (4.155). We shall consider the two-body terms contained
in @ in detail: these are first defined and so can be identified in their unscreened forms; so we
are concerned with the expressions (3.74), (3.7¢), and (3.7d) after restoring the pair-correlation
function g(r) there. We first note that all the even two-body terms (3.7¢) are contained in the
nf that replaces the first term of (5.21), because all the terms of (3.7¢) represent pure
self-interactions of the reference molecule, and # contains all of those. Furthermore, the term
(8.7b) is evidently contained in m, because F contains F.

On the other hand we now show that all of the odd two-body terms (3.74) are contained
in @. To see this we first consider the fourth order term of (4.15) which is governed by the
correlation function

Yioss = Usgaa+ Uy Uy, »
= 01234 - Glza - 0234._ 0124 - G134 - Glz Ga4 - Gu Gza
+2(Glz+Gza+Ga4 +’Gl4) +Gla+624—5 (7~13)

in terms of the generalized Ursell functions (4.35) or the generalized distribution functions
(2.11). All terms from (7.13) with one or more delta function not connecting consecutive points
are contained in the term @ in (7.1). We consider the contribution from ¥,,,, with a product
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of two delta functions connecting x, with x, and x, with x,. From (2 11) we see that there
is only one such term contained in G,,,,, namely - >

015034812 » : (7.14)

and none of the other terms of (7 .13) contains this combination of delta functions.
So the contribution from (7.14) substituted for ¥;,5, in (4.15) gives

n?at Tr fﬁm-Fz,-F,2~ngm dx,. ' (715a)
We then see that (7.154a) contains the two-body term
et Tr fFlz'le'Flz'Tm‘gmdxz:' S (T158)

which is essentially the last term of (3.14) or the first term of the series (3.7 d). We shall therefore
refer to (7.15a) or (7.154) as two-body terms even though they are not stnctly propornonal
to n? (as (3.4), (3.5), and (4.4) all show). ~ , :

To understand the role of the two-body term (7.15) we first interpret a more normal term,
the one for p = 2 in the sum of (7.1) with 7 replaced by ,6’ ‘ Lo

(nB) 2T"J’Fu Tzl(gm"l) dxz ' : ‘V : " (716)

ThlS term describes a process in which a molecule at x, in the medium is-first polanzcd by
some field (contained in Ty,), as accounted for by one factor f. The field from the dipole
propagates through the medium from x, to x, (the factor F,) and polarizes a molecule at x,
in the medium (the second factor £). For short this scheme can be labelled * BER’.

Now (7.155) may be viewed as a process of the same general character. First the dipole
initially induced in a molecule at x, (factor &) interacts with itself via a molecule at x, as
described by a?F,, -F,,. This self-interaction is part of the polarization of the molecule at x,
in the medium as described by an effective polarizability £. The dipole arising from the
self-interaction then creates a field which propagates from x, to x, (left factor F,) and polarizes
a molecule there (the last factor o« which is the lowest order contribution to an cffcctlve
polarizability). So superficially the process (7.156) is part of the ‘SF8* processes. R

The important point now is that the self-interaction of the molecule at x, is not independent
of the propagation from x, to x, because both processes involve the same molecule at x,. It
is therefore impossible to describe this process in terms of quantities like £ and F (or &), which
are separately averaged. Replacing 7 by £ (and omitting Q) in (7.1) would therefore involve
a decorrelation approximation very similar to the one implied by expressing £ in terms of a
reaction field as in (6.21) where the comparison of (b) and (¢) in figure 3 was instructive.

The process (7.1556) can equally well be described as first a propagation from x, to x; (the
factor F,, to the right) and subsequently a self-interaction of a molecule at x, through the one
at x,. It is interesting that the two interpretations correspond to one and the same process in
contrast to the situation when the self-interaction is through a third molecule.

The result for (7.15) may now be extended to show that all the remaining of the odd two-body
terms in the series (3.7d) are also contained in Q. From the general expression (I 4.11) for the

26-2
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Y functions in terms of generalized Ursell functions we find that each even order Y function
beyond (7.13) starts with two terms similar to those of ¥,,4,

23056 = Usoaase+ Usss Unae+ - (7.174a)
, .Y123..,8 = Ulgs.8t U_xasv Usgest -+, : ; (7.17b)

(see figure 2 of Hynne (197 5) for ¥,,5.56). Taken together, the two terms exhibited for each
Y function contain I
’ 4815035 824 046 £125 (7.184)

17803035 057 094 046 0s 12> : : . (7.18)h)

and the remaining terms not shown in (7.17) do not contain further terms with the combination
of delta functions of (7.18); this follows from the definition (I 4.11) of the Y functions. The
terms (7.18) reduce the 6,8, ... order terms of (4.15) to well defined two-body terms similar
to (7.154) with 5,7, ... propagators F transmitting fields back and forth between molecules at
x, and x,. And by definition these terms are all in @ because they arise from delta functions
not directly across F propagators. -

It is plain that the higher of the odd two-body terms have the general character that can
be described as follows: multiple self-interaction of a molecule at x, via one at x,; propagation
from x, to x,; multiple self-interaction of the molecule at x, via the one at x,. And several
equivalent interpretations (corresponding to the two interpretations of (7.15)) are possible, all
describing one and the same physical process. But as with (7.15) the processes cannot be
described adequately in terms of £. ‘ ;

With this as a background we can now return to the question of ﬁndmg the correct’

interpretation of the formal result (7.12). It is plain from the discussion that a term 77 is
divergent because it lacks contributions contained in @ that naturally belong to it. This
divergence problem stems from the use of the screened propagator &, as described below
(6.11). These _.compensating,divcrgcnces must of course be transferred from @ to reach a final
result. : : :
Ifall the relevant terms are transferrcd from @ to 7P we would get something like a p-body
(or p-centre) effective polarizability. As an approximation we transfer the compensating
divergences with neglect of weak correlations by replacing 72 by f? in the series C? and we
keep the strong correlations by retaining the convergent terms of @ explicitly. If the resulting
series are denoted by € and 2 respectively, we get

: (mln )(2";21:;1) ﬂ+m3+22 (@+2)+ 3nz‘(?+-@)2 BN

in which = m3(nf)? + [m3+ (167/3m?) m3] (nB)* + L (1198)
and the ﬁrst fcw terms of .@ will be ' Lo

2= n%o r S (aF )21, 20 dx2
=1

+n%a® Tr ff Flz ) anf F:u : Flz 'Izl(glzs -giz) dx,dx;+..

+nal Trf Fro For Fro Fog Fog Ty 100 Xy dg + .. (7.19¢)
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In € the coefficients m}, are given by (7.15) with the small spheres omitted; thus all integrals
of (7.1b) are interpreted as principal value integrals yielding m§, (not m,). Note that at O((nf)?)
and beyond, the coefficients in € depend on m?, a feature we have not been able to sum away.

The series 2 is the sum of all convergent terms arising from (4.15) through correlation functions
containing at least one delta function not directly across a propagator F but without any delta
function connecting the first and last points, called x, and x, in the notation of (4.155).
Equation (7.19¢) displays all of the two-body terms of 2 (the odd ones) and two typical
three-body terms proportional to a® and a® respectively: they are exhibited again in figure 4.

9= o @4....4.(1' (é—é)+a’&+u-
Ficure 4. Diagrammatic representation of the series (7.19¢) showing the first term of the series of
odd two-body terms and the two typical three-body terms exhibited in (7.19¢).

" Thus we have reached a well-defined result (7.19) for the generalized Onsager-Bottcher
relation. It is evidently approximate; but we have laboriously built up a picture that indicates
to the order of terms explicitly exhibited in (7.194) and (7.19¢) that (7.19g) is a good
approximation. Even so, the methods of summation and approximation used make it impossible
to put a precise number or order expression on the error made in reaching (7.194).

The result (7.19) is the best possible ‘practical’ formula we have been able to provide
(although for any real practical calculation we will still need some approximation for £, and
we have no better closed form than (5.22) with (5.18) as alternative to the unscreened series
(6.95)). However, because of the uncertainties surrounding the precise status of (7.19) one
would still like to have an exact expression from which it would be possible, in principle, to
construct an exact dispersion relation of a generalized Onsager-Bottcher form, utilizing the
insights gained through the derivation of (7.19) for that purpose. '

~An exact relation must build on an unscreened expression such as (3.1). We may sum all
terms of (3.1) in which the chain of propagators F begins and ends at the reference molecule

(index 1 in (8.1)) to get nf. So we have

<m2—1)< 3 )—nﬂ+§ L (ny)? o (7.20a)
an J\mrgz) =0T 2 ‘
Here the coéﬁicicnts L;, aré gviven‘b‘y (8.15), (3.1¢), ... with omission fo the closed loop terms
mentioned. Explicitly, L, is given by

L;,;|V|~_lT;ff f Fio*Fag o Foponyp Tpr Higs, pdxy .. dx,  (7.200)
VJV-v V—-v ‘

in which the correlation function H{,; ,, by definition is obtained from H,y; . (given by
(I 3.18) or (2.10)) by omitting all terms with delta functions connecting cyclically consecutive
points.

Equation (7.20) has an effective polarizability on the right side but a Lorentz internal-field
factor on the left. We know from (7.19) that a cavity-field factor goes with the term 78 on the
right. On the other hand, the appearance of macroscopic factors containing m and the square
of (¢ + 2) in the higher terms of (7.19) suggests that the cavity-field factor associates naturally
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with the linear term ng only (and not with the higher terms). This conclusion agrees with the
picture that the higher terms of (7.19) involve multlcentre effective polarizabilities for which
a simple spherical cavity is plainly inappropriate. :
So working from (7.20) we must aim at deriving an expression of the form
mi—1 _ 3m?

4in 2 241
Ev1dently it is unlikely that we can derlve a form like (7. 21) in any simple way; but from the
steps of the derivation of (7.19) we may already infer what types of contributions contained

in the higher terms of (7.20) are responsible for the change of the Lorentz factor towards a
cavity-field factor. For example, the term

(my)* V-1 Tr j | f f FraFao Ton(g1s— 1) dixy dxydox, (7.22)
: VJV—o JV—u

is typical of the terms which must be important contributors. For the self-correlation term
associated with it has gone into § and (7.22) itself contributes to the elimination of the reaction
field of a Lorentz sphere which accounts for the difference between the Lorentz and cavity-field
factors as we show in §8. The g,;—1 provides a sphere of molecular size about x; and local
environment in the integration with respect to x,; and the excursion into a smooth dielectric
on the two-coordinate is characteristic of a reaction field. So corrections like (7.22) are finally
responsible for the Onsager cavity-field factor as modified by the actual local environment. We
have not carried out this direct approach to the Onsager—Bottcher relation through (7.20) and
the unscreened theory in much more detail than this. Our ‘best’ result to date remains (7.19).
But we shall discuss the significance of the change of the internal-field factor in macroscopic
terms and this is done in §8.

It remains tantalizing that the result (7. 12) is formally exact yet cannot be used until the
divergences are matched away whereas (7.20) is both exact and well defined but formally
surface dependent and therefore difficult to work with. The approximate formula (7.19)
(supported by the possibility of the exact expression (7.20)) therefore constitutes our final result
for the refractive index: it is our best possible compromise between practical utility and
exactness for fluids outside the low density region; the systematlc density expansion (3.3)
remains the best approach for gases.

It is discouraging that we have not been able to obtain a result that is both exact and useful
for numerical work. A way out of the dilemma of the surface problem against the divergence
problem may be to screen only the transverse part of the propagator F, and this may be the
best approach for computational purposes. However, the quite deep understanding of the
mechanism of dielectric polarization we have built up at microscopic level would not have been
obtained by such an approach; we now use this understanding in a comparison of the two
strictly macroscopic formulae, the Lorentz—Lorenz formula (1.1) and the Onsager—Bottcher
formula (1.2) in §8. ‘

nfi + corrections. (7.21)

8. EVALUATION OF MACROSCOPIG MODELS

We are now in a position to compare the two macroscopic expressions introduced at the start
of this paper. These are the Lorentz—-Lorenz equation (1.1) and the Onsager-Béttcher equation
(1.2): These macroscopic relations are generalized by the microscopic theory as the formulae
(3.1) and (7.19) respectively.
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We first discuss the Lorentz—Lorenz relation and note that the generalized relation (3.1)
contains the term n8 on the right side: only na or ny appears in the simple form (1.1). The
presence of nf in (3.1) was pointed out at (7.20). Itisin (3.1) because it is in (2.1) and because
nf contains no Lorentz terms and so cannot have contributed to the Lorentz internal-field factor
on the left of (3.1). The presence of #f in (2.1) is evident from the expansion (I 3.16) of A
which starts with the kernel JI, (which itself contains nf as (6.8) and (6.9) show).

Thus, the correction terms to the simple Lorentz—Lorenz relation (the higher terms of (3.1))
change the ny of (1.15) into nf: the simple Lorentz-Lorenz relation lacks all of the
self-interactions corresponding to the second term of (6.5). We shall show below how other
correction terms of (3.1) change the Lorentz internal-field factor on the left side of (1.1) to
the cavity-field factor that appears in (1.2). The two sets of correction together mean that the
Onsager-Béttcher relation forms a better starting point for a description of the refractive index
although it itself needs correction as (7.19) shows. :

Although it is a trivial consequence of (3.1) it is worth stressing that the simple Lorentz—
Lorenz relation (1.1) also lacks all of the two-body terms, the b,(w, T) n* of (3.3) with b, given
by the infinite sum (3.7). Of course, the inverse Lorentz factor on the left of (1.1) takes account
of distant dipoles, but all effects of correlations between pairs of molecules are missing. This
results in systematic error already at low densities as we have discussed near (3.34).

We now turn to the Onsager-Béttcher relation (1.2). Evidently (1.2) does account for the
self-interactions of the reference molecule, in so far as it contains the macroscopic polarizability
(1.3b). The discussion of §6 shows precisely what this means in microscopic terms; we shall
exemplify the consequences by accounting for the important two-body terms.

We first note that the Onsager—Bottcher relation with the exact polarizability nf 1ncludes
all of the even two-body terms (3.7¢) but no other two-body terms. The remaining ones are
of course contained in the correction terms of (7.19) to the simple Onsager—Boéttcher relation.
All the odd two-body terms (3.7d) are contained in 2 as (7.19¢) shows. And the single term
(8.7b) is contained in m), given by (5.185). (Note that to lowest order in na the factor
1(m?+2)/m? of € in (7.19a) becomes unity and the propagator Fin (5.185) becomes F.)

So the Onsager—Bottcher relation with the exact polarizability contains all the even two-body
terms (3.7¢) but not the odd ones (3.74) or (3.74), and from this we may get to the macroscopic
relation in two stages. First we approximate the effective polarizability £ by (6.21) in terms
of an exact reaction-field coefficient 4, given by the microscopic expression (6.175) and shown
in figure 3a. Then we replace the exact s by the macroscopic form of it (1.25).

Already in the first step, the approximation (6.21), we lose all of the even two-body terms
(8.7¢) beyond the first. The reason is that these terms all contain multiple closed loops and
such terms become approximated by powers of the single-loop two-body term shown as the
second term in figure 3a; and these powers do not have the character (density dependence)
of the true two-body terms they approximate.

The further step of replacing the exact reaction-field coefficient s by the approx1mate
macroscopic form (1.24) cannot be followed in such minute details, but the results
(5.12)—(5.14) throw some light on the approximation.

Certainly the screened radiation reaction #imk} is missing in (1.24) and, although this
imginary term is small compared to the real reaction field, it is essential to the extinction
coefficient and to the internal consistency of the theory.

It is satisfactory that the modified formal reaction field (5.12) (or (5.13) with (5.14))
otherwise resembles the macroscopic expression (1.25) so closely. We can see how the concept
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of a cavity introduced in the macroscopic theory is actually contained in the exact microscopic
expression (6.175) for the reaction field (compare with Linder & Hoernschemeyer 1967). We
see that in the integrations in (6.175) the integrands vanish when any of the integration
variables come closer to the point x, than some molecular (hard core) diameter. So in each
term an effective cut-off is introduced by the appropriate many-body correlation function. This
set of correlation functions replace the simple pair-correlation function introduced heuristically
in (5.13). But the main effect is the same: the reference molecule makes itself a cavity into which
it prevents other molecules from penetrating, and this is the reason why some molecular
diameter must play an important role in the theory.

We may summarize our analysis of the two macroscopic models as follows. The Lorcntz—
Lorenz relation lacks all self-interactions and all two-body terms. The Onsager—Bottcher relation
contains the self-interactions in approximate form, but it lacks all but one of the two-body terms.
However, the single two-body term included, ‘

: nzc:L“lVl“1 TrJ‘ dxlf dx,F,- Fmglz : o (8.1)

(essentlally the term cons1dcred already by Kirkwood (1936) and Yvon (1936 1937) is in fact
numerically the most important of the two-body terms except near a resonance (compare with
§3). So the Onsager—Bottcher relation does give a satisfactory description for low densny gases
for which it is definitely better than the Lorentz—Lorenz relation.

 Wesstill have to explain the change of the Lorentz internal-field factor in (3.1) into the cavity-
field factor of (7.19) through the higher terms of (3.1).:Related questions are why the screened
Lorentz terms sum to a cavity-field factor and what these terms mean physically.

Recall first that in the Lorentz model the internal field on a molecule can be obtained as
the average field & minus the field inside a sphere of uniform polarization P,

E,=&—(—4tU)-P. 82)

The cavity field, on the other hand, equals the Lorentz internal field minus the reaction field
of a polanzed Lorentz sphere, ' :

2 m? 47 | mi—1 _
= 8 .
_RL (_3 2m2+1)(3 a P) &n 2+1P o (8.}3)

and can therefore be written : R .
E,=&—(—4nP+R;) ' (8.4)

The expression (8.5) for the cavity field has the same form as the Lorentz internal field (8.2)
but the Lorentz term (2.7) is replaced by

4z

TomP41 + 1 (8.6)

which almost equals the screened Lorentz term (5. 1) Again the model has dcnor_hiﬁator
2m?®+ 1 rather than 3m? as in the (5.1) (compare (1.25) with (5.12)). This similarity between
the macroscopic model and the microscopic theory is not accidental.
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To see this we use the integral equation (4.10) to rewrite (5.1) as

. . :
f F(x,x';0)dx’ = f F(x, x'; 0) dx’ + 4;1 f dx” f dx’F(x,x";0) F(x", x';0), (8.7)
v . v . v .

where v is understood to mean the limit of a vanishing small sphere centred on x (not x” in
the last term on the right side as our convention would imply). The first term of (8.7) is by
definition the usual Lorentz term (2.7) and equals the first term in brackets in (8.4) apart from
the factor P. The second term (upon multiplication by P) almost has the form of a reaction
field of -a small polarized sphere. It evidently corresponds to the second term in brackets in
(8.4). It is not quite the reaction field of a polarized Lorentz sphere because F in (8.7) is the
propagator for a uniform system rather than for one having a cavity, and the integration with
respect to x” in (8.7) includes the sphere. Nevertheless the similarity is striking whereas the
differences explain the denominators 3m? and 2m?+-1. It is remarkable that the contributions
of the screened Lorentz terms (5.1) in the screened theory nevertheless sum to produce precisely
a cavity-field factor, despite the differences just discussed. (Briefly, the explanation is that we
sum contributions (5.1) from a set of terms in the screened theory that differs from the one
for which the terms (2.7) are summed in the unscreened theory.) :

We may view this result as stating that the corrections of (3.1) to the simple Lorentz—~Lorenz
relation (1.1) eliminate the reaction field of the Lorentz sphere. Plainly, this artificial reaction
field must be replaced by the true reaction field of a molecule which as we have seen is indeed
present in the higher terms of (3.1). ‘

The terms of (3.1) that eliminate the reaction ﬁeld of the Lorentz sphere can be identified
by using the expansion generated by (4.1) in (4.2) and (2.1), compare with (7.22). In this way
it becomes clear that the conceptual framework of the Onsager-Béttcher model is indeed the
physically natural starting point of an understanding of dielectric polarization.

The idea of a molecular cavity, with the cavity field created by the external field in the
presence of the surrounding molecules plus the reaction field of the molecular dipole in the
cavity is in complete accord with the microscopic theory apart from the decorrelation
approximation (6.21). Conceptually, the main limitation of the model is that it treats the
surroundings of any molecule as a continuum. The approximation of the effective polarizability
in terms of the Onsager reaction field is a consequence of this feature: it is impossible to treat
multiple interactions with a specific group of surrounding molecules unless the surroundmgs
are represented by discrete molecules. '

9. SUMMARY AND CONCLUSION -

The present paper is part of a unified theory of the optical processes in molecular fluids
exposed to externally incident light. The foundation of the theory was laid in the previous paper
in this series, I, on the optical response of a finite molecular fluid. From results obtained there
we have developed a theory of the complex refractive index m of a fluid of isotropically
polarizable molecues. The theory also applies to the frequency dependent dielectric constant
¢(w) through the relation €(w) = m?(w) derived from the microscopic theory in I.

From this theory we derive expressions for the real part of the refractive index and for the
extinction coefficient 7. We investigate their dependence on the density of molecules, the
temperature, and the frequency, and we solve the conceptual aspects of the local field problem
in an analysis of the conflicting macroscopic formulae of Lorentz and Bottcher. These results

27 Vol. 321. A
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are obtained through the interplay of two formulations of the refractive index theory, the
unscreened theory developed in §§2 and 3 from the expansion (2.9) of the susceptibility kernel,
and the screened theory developed in §§4-7 from the expansion (4.2).

The unscreened theory is the fundamental one. It is exact within the scope defined in the
introduction, and it is in keeping. with the idea of explaining the propagation of light in a
medium as the result of elementary scattering processes taking place in empty space.

- The fundamental formula for the refractive index is therefore the expansion (3.1) in ny
generalizing the Lorentz-Lorenz relation (1.1). The coefficients L, are known to all orders,
determined by the H functions, (I 3.18) and (2 10), with omission of self-correlations directly
across propagators F. :

The series (3.1) is then arranged as a densnty expansion so that the dependence of the
refractive index on the thermodynamic state of the fluid and the frequency of the incident light
can be investigated. The coefficients have to be calculated term by term, and we evaluate the
first two by summing the infinity of two-body terms (3.7). The result therefore applies to gases
at sufficiently low densities, and the dependence on density, n, temperature, 7, and frequency,
w, is given by the w and T dependent coeflicients, the refractivity virial coefficients (or dielectric
virial coefficients). ‘ .,

The second refractivity virial coeﬂic1ent is calculated in an approximation described around
(3.9) and (3.10). The result is (3.11) for the refractive index, which splits into (3.19) for the
real part and (3.17) for the extinction coefficient, 7. These results are expressed in terms of a
function #,, given by (3.94), which is calculated for two choices of intermolecular potential.
For the Lennard-Jones potential (3.12), 4, is given by (3.13) in terms of the integral (3.14).
It is a function of the dimensionless variables a®/y and T/ T only, with a and kg T the
Lennard-Jones parameters. We show that the refractive index then essentially depends only
on ny, a®/y, and T,/ T. For a hard-sphere gas %, takes the very simple form (3.15), which
nevertheless describes many features correctly, as discussed near (3.35) and (3.36).

The second refractivity coefficient is calculated numerically for a Lennard-Jones gas; the
results are summarized in table 1 and figure 1. We note in particular that the correction is
typically 10-20 9, of the contribution of the Lorentz internal-field factor (see (3.34)), and that
the temperature coefficient of the refractive index, given by (3.22) with (3.21) and (3.23), is
usually negative at room temperature, whether it refers to constant density or to constant
pressure. :

The result (3.11) applies in dlsconnected frequency regions, namely far from any molecular
resonance and in the wings of resonance absorption lines. Off resonance the extinction
coefficient is given by (3.26); in line wings (3.33) applies. Both expressions are special cases
of the more general result (3.17). '

‘Physically the line-wing frequency regions are characterized by distant pairs of molecules
resonating at frequencies given by (3.28). These resonance conditions appear in the thcory from
singularities just off the real axis in the integral (3.95).

The screened theory, §§4-7, provides a framework for a conceptual analysis of the mechanism
of dielectric polarization. The main conclusion is that the Onsager-Béttcher relation is wholly
contained in the microscopic expressions for the refractive index. This follows from (5 19)
substituted in (2.1) through a SImplc approxnmatlon thus

A=JI— fA.ﬁ"Adxzdxs | (9.1a)
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yields : m’— ~ ( 4n) (m’-—l :
= 3m? an )’ (®.15)

The average of (6.8) shows that JI contains n8; and in the bulk approximation & becomes
F and the integral of this propagator contains (—4n/3m?) through (5.1). Then each A yields
approximately (m?—1)/4n through (2.1), and (9.16) follows if what remains of JI and from
the integration of & is ignored. Simple algebraic rearrangement finally brings (9.1) into the
Onsager-Béttcher form with an exact effective polarizability g.

The argument we have just given serves to identify the key steps of the systematic derivation
of the Onsager-Béttcher relation (6.23), given in §§5 and 6, whereas (9.1a) and (9.15)
exhibited together reveal structural relations between the miéroscopic and macroscopic
expressions. But to justify (9.15) as an approximation and to extend it to the final result (7.19)
requires the very much more elaborate argument given in the main text.

The derivation of the generalized Onsager—Bottcher relation (7.19) is important not the least
for the physmal insight it provides, namely a thorough understanding of the significance of
macroscopic concepts within the microscopic theory, and namely and particularly of the
effective polarizability, the Onsager reaction field, the cavity field, and the Lorentz internal
field.

The effective polarizability is deﬁned below (6.4), and we find the exact expansion (6.95)
for it. It has the form of the polarizability. of an isolated molecule corrected by all possible
self-interactions of the molecule, see (6.22a) with figure 3. It is contained in the polarization
kernel JI, as we mentioned below (9.1), and it appears on the right side of (3.1). So the
generalized Lorentz—Lorenz relation contains nf, not just ny, as (7.20) shows.

‘ The reaction-field coefficient is defined in the microscopic theory by (6.174) with (6.16), and
it is given explicitly by the expansion (6.175) with (6.17¢). This definition is wholly in the spirit
of Onsager’s original macroscopic definition for a static dipole.

The effective polarizability can be expressed in terms of the reaction field coefficient by the
relation (6.21) in agreement with Bottcher’s macroscopic polarizability (1.34). But in the
molecular theory this relation is only an approximation. It neglects correlations between

molecules participating in different self-interactions of a reference molecule. As a consequence,
one loses all but one of the two-body terms contained in g in the approximation (6.21). The
problem is solely associated with intermolecular correlations: we derive the exact relation
(6.19) for a fixed (instantaneous) configuration of molecules.

The conclusion is that an effective polarizability, not a reaction field, is the fundamental
concept in the refractive index theory or in general for fluids of non-polar molecules; for the
low-frequency dielectric constant of polar fluids the Onsager reaction field remains
fundamental. : ‘

The effective polarizability goes together with a cavity field, which appears in the microscopic
theory through (5.1) as (9.1) has just recalled. The physical meaning is explained in §8: the
term (5.1) (upon multlphcanon by the average polarization P) represents essentlally the field
from a ‘polarized Lorentz sphere’ wzt}wut its reaction field. When this field (in its macroscopic
version (8.6)) is subtracted from the average field &, one obtains the cavity field (8.5).

In the Lorentz model the internal field has the well-knqwh form (8.2) of the average field
minus the field from the polarized Lorentz sphere, — (4n) P. But in the microscopic theory the
reaction field from the polarized Lorentz sphere becomes replaced by the reaction field of a
molecule as contained in the effective polarizability B, so the cavity field factor remains on the

27-2


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

356 F. HYNNE AND R. K. BULLOUGH

left side of (7.19) whereas the term nf appears explicitly on the right. The macroscopic cavity
factor is further corrected for intermolecular correlations by the higher terms on the right side
of (7.19).

One conclusion surely is that the Onsager—Bottcher model is physically more satisfactory than
‘the Lorentz model. We have argued elsewhere that there are also didactic advantages from
using it in elementary dielectric theory (Hynne (1983); note that the simplified diagrammatic
notation used there differs considerably from the one used here). The Onsager—Bottcher relation
has its own shortcomings: we explain these in §8 with special reference to the two-body terms.

The ideas we have just discussed appear directly in the macroscopic models. In addition to
these, there appeérs in thé microscopic theory another concept of macroscopic significance, the
screened propagator & (X, x’;®), defined in I and given by the expansion (4.1). Physically it
describes the electromagnetic field from an oscillatory dlpole propagatmg in the material
medium. We show in §4 that & can be approximated by a ‘macroscopic’ form F,, which
consists of two parts, F,, = F+f, a translationally invariant part, F, given by the natural closed
form (4.4),and 2 surface dependent part, f, that has the character of reflected waves, and which
we believe can be represented as the sum of all multiply reflected parts of a primary spherical
wave described by F. The derivation shows that the approximation of & (x, x’; w) by F(x, x’; »)
is best when |x —x’| is large compared to a typical intermolecular correlation length, and we
give an example to illustrate the approximation involved, see figure 24. v

A result of the theory on a more technical level is the solution of the surface problem. The
refractive index as given for example by (3.1) depends on the shape of the region V containing
the molecular system. The solution of the problem employs (2.1) with the expansion (4.2) and
utilizes the approximation F, for # just mentioned. We show that the surface dependence stems
from the reflected part f of the propagator F,, and that it can be neglected in short range
integrals because amplitudes of ‘spherical waves decrease as the inverse distance from a source.
A bulk approximation which replaces &# by F and extends mtegratlons to all space can
therefore be applied to reach the manifestly shape mdependent expression for the refractwe
index (4.15).

The final result of the screened theory is the generalized Onsager-Bottcher relation (1. 19)
It is the natural starting point for approximations extending the low-density result (3.11) to
higher densities; but we have not yet explored its numerical consequences. The result (7.19)
has much of the character of an expansion in nf although the numerically important terms
of 2 must appear separately: the neglect of these terms means an approximation comparable
to the decorrelation approx1mat10n (6.21) for the effective polarxzablllty Although (7.19) is
evidently approx1mate (already through the use of F) the term 7/ on the right side is entirely
correct; but the powers of nf represent an approximation. The discussion below (7.19) explams
why

" An important feature of the theory is that it is developed along two tracks, the unscreened
and screened formulations. This dlchotomy is actually a virtue because many of our results
depend on both tracks. It is unfortunate, however, that the unscreened theory is encumbered
with the surface dependence and the screened theory with the divergence problem The surface
problem cannot be avoided because any exact theory must have it although in numerical work
the problem may be managed art1ﬁc1ally through the use of a convergence factor on the
propagator F.

The dlvergence problem can be av01ded in several ways, but it is not obviously posmble to
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derive all the results obtained here from such alternative formulations; and the very simple
structure of the unified theory exhibited in I would undoubtedly be lost if the screened theory
is modified. The most promising way of eliminating the surface dependence without introducing
a divergence problem is to screen only the transverse part of the propagator F. How this might
be carried out in practice can be seen from the solution of a similar problem in connectlon with
macroscopic multiple scattering in the paper III.

The refractive index theory we have presented here is of course incomplete in several ways,
first of all as regards numerical evaluation. Obvious extensions within the present framework
could sum the two-body terms with the full propagator F. or sum the three-body terms in an
approximation similar to the one used to obtain (3.11). Approximations to the effective
polarizability improving on the form (5.22) with (5.12) would also be very useful. On the
conceptual side of the local field problem the present work has perhaps achieved more. Still
a number of problems remain, such as prov1dmg an actual proof from the microscopic theory
that the reﬂected part’ of the propagator FV has the proposed form. ‘

. APPENDIX

1In this Appendix we shall indicate the role of the divergent terms of @ (introduced in (7.1))
by analysing a specific examplé. We look at a contribution coming from the term Mg (na)® of
(4.15). We consider the contribution to @ from the terms of ¥, 4,4, containing the product of
two delta functions 8,38, and no other. The delta functions reduce the sixth order term to
a four-body term, and if we relabel the resultlng variables as 1, x,, Xgs and X4 (see figure 5)
we then get '

nta® Tr J f f dx, dx, dx, By By Fra Fau Fua T
x (&234‘&23“3124"31354 tg1ptgi3tea—1). (Al)

3 4

Figure 5. Numbering of coordinates X}, X,; X3, X, in the integral expression (A 1) analysed in the Appendix.
No correlation functions are marked on this figure. .

The factor nt arises because each delta functlon carrles a factor =1 with it. The contribution
(A1) to Q may be compared w1th the first term of the series €, (7. 19b) namely

s = opr T [ FulaleaDdn (a2

" The integral (A 1) diverges when x, approaches x, and when x, aproaches x,; it converges
at infinite distances between the points because of the combination of correlation functions and
propagators. The divergences of (A 1) partly compensate the divergences of the term my(nyp)?
and thus partly justify the replacement of the formal polarizability ¥ by #; but the divergences
do not match in pairs and the bookkeeping is very complicated. So for details of the analysis
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of this problem we refer to Hynne & Bullough (1972) where an analogous but simpler case
is treated.

Here we are primarily interested in the goodness of the approximation involved in using
powers of £ in the step from C° to €. We therefore consider the contributions to the integrals
(A 1) where the points x, and x, are widelyseparated from the points x, and x,. The correlation
function in (A 1) then behaves asymptotically as g,,(g;, — 1), whereas the two sets of points are
connected by four propagators ensuring convergence. It is convenient to write this combination
of correlation functions as

812(83a—1) = (g12—1) (gga—1) + (g34—1). (A3)

The contribution of (A 1) through the first term on the right of (A 3) can be associated with
a part of the term (A 2) namely that coming from two-body loops from each of the two
factors £. In (A 2) these two loops are of course totally uncorrelated. But by adding the first
term of (A 3) to the correlation function of (A 2) we get (g,,— 1) g3, and this accounts for the
fact that the two molecules at x; and x, in the two loops cannot penetrate each other. Plainly,
by using £? in € instead this exclusion effect is not properly accounted for so a ‘fluctuation
term’ should be retained in @ to account for the difference. We believe that fluctuation terms
of this sort are small enough so that they can actually be neglected. (This argument does not
account for the difference between the screened and unscreened propagators used in @ and
€ so the argument needs to be taken still further.)

The second term on the right of (A 3) generates a contribution that may be compared with
the last three-body term of (7.19¢). To the short-range correlation function (g,,— 1) connecting
the two loop-molecules in (A 3) there corresponds a self-correlation n71d,, in (7.19¢): the two
molecules are replaced by one. Asymptotically the contribution from the last term of (A 3)
equals the three-body term of (7.19¢) apart from a factor

(nkpky T—1) = —2Byn+.... (A4)

(For this factor we have used the compressibility theorem of the grand ensemble (see, for
example, Hill 1956, p. 236) and the expansion (3.18). Thus, except for quite dense fluids, we
may neglect the four-body term in comparison with the three-body term exhibited in (7.19¢).)

In summary, we have analysed the term (A 1), a typical divergent term from @. We know
from the exact (unscreened) theory that the divergences of @ must exactly eliminate the
divergences from the powers of 7 in C?, apart from the artificial mismatch introduced by the
replacement of & by F. Suppose now for a moment that elimination of divergences replaces
powers of 9 by powers of £ so that the term m)(ny)? becomes (A 2). We then find that the term
(A 2) is further corrected by a fluctuation term from (A 1) that accounts for the fact the
self-interactions contained in the two factors £ in §2 are actually correlated. Such correlations
are neglected in the step from (7.12) to (7.19). The neglected terms are considered numerically
insignificant: it does not matter much that two different loop-molecules exclude each other from
a small part of the entire region available. On the other hand, it is important to retain terms
in which two loop-molecules are in fact identical; the three-body term shown as the last one
in (7.19¢) is important on that account. As figure 4 illustrates (contrast the last term shown
with figure 5) this three-body term may be said to have two two-body self-interactions of
two different molecules through the same third molecule.

This is as far as we can reasonably go here towards indicating the significance of the divergent
terms of @ and justifying the neglect of them.
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